题目内容

(2013•乌鲁木齐一模)函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象如图所示,其 中A,B两点之间的距离为5,则f(x)的递增区间是(  )
分析:由图象可求函数f(x)的周期,从而可求得ω,继而可求得φ,利用正弦函数的单调性即可求得f(x)的递增区间.
解答:解:|AB|=5,|yA-yB|=4,
所以|xA-xB|=3,即
T
2
=3,
所以T=
ω
=6,ω=
π
3

∵f(x)=2sin(
π
3
x+φ)过点(2,-2),
即2sin(
3
+φ)=-2,
∴sin(
3
+φ)=-1,
∵0≤φ≤π,
3
+φ=
2

解得φ=
6
,函数为f(x)=2sin(
π
3
x+
6
),
由2kπ-
π
2
π
3
x+
6
≤2kπ+
π
2

得6k-4≤x≤6k-1,
故函数单调递增区间为[6k-4,6k-1](k∈Z).
故选B
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查复合三角函数的单调性,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网