题目内容
4.在平面直角坐标系中,以坐标原点O为极点,x轴的负半轴为极轴建立极坐标系,已知圆C的极坐标方程为ρ=2cos(θ+$\frac{π}{6}$).直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}+t}\\{y=-\frac{1}{2}+\sqrt{3}t}\end{array}\right.$(t为参数).(1)求圆C的直角坐标系方程及直线l的斜率;
(2)记Ω表示圆C内部在直线l下方的区域,A是Ω内一点,求|OA|的取值范围.
分析 (1)圆C的极坐标方程为ρ=2cos(θ+$\frac{π}{6}$),展开为${ρ}^{2}=2×\frac{\sqrt{3}}{2}ρcosθ-2×\frac{1}{2}×sinθ$,把$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$代入即可的直角坐标方程;由直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}+t}\\{y=-\frac{1}{2}+\sqrt{3}t}\end{array}\right.$(t为参数)消去参数t化为普通方程即可得出斜率k.
(2)由图形可得|OF|≤|OA|≤2R.联立$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=\sqrt{3}x-y}\\{y+\frac{1}{2}=\sqrt{3}(x-\frac{\sqrt{3}}{2})}\end{array}\right.$,解得F.可得|OF|,即可得出.
解答 解:(1)圆C的极坐标方程为ρ=2cos(θ+$\frac{π}{6}$),展开为${ρ}^{2}=2×\frac{\sqrt{3}}{2}ρcosθ-2×\frac{1}{2}×sinθ$,
∴x2+y2=$\sqrt{3}x-y$.
由直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}+t}\\{y=-\frac{1}{2}+\sqrt{3}t}\end{array}\right.$(t为参数)可得:$y+\frac{1}{2}=\sqrt{3}(x-\frac{\sqrt{3}}{2})$,可得斜率k=$\sqrt{3}$.
(2)由图形可得|OF|≤|OA|≤2R.
联立$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=\sqrt{3}x-y}\\{y+\frac{1}{2}=\sqrt{3}(x-\frac{\sqrt{3}}{2})}\end{array}\right.$,解得F$(\frac{\sqrt{3}+1}{2},\frac{\sqrt{3}-1}{2})$.
∴|OF|=$\sqrt{(\frac{\sqrt{3}+1}{2})^{2}+(\frac{\sqrt{3}-1}{2})^{2}}$=$\sqrt{2}$.
∴$\sqrt{2}$≤|OA|≤2.
点评 本题考查了直角坐标方程化为极坐标方程、直线参数方程的应用、两点之间的距离公式,考查了数形结合思想方法、推理能力与计算能力,属于中档题.
A. | α∩β=l | B. | α∥β,l∈α | C. | l∥β,l?α | D. | α∥β,l?α |