题目内容
【题目】祖暅是南北朝时代的伟大科学家,5世纪末提出体积计算原理,即祖暅原理: “幂势既同,则积不容异”.意思是:夹在两个乎行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现将曲线绕轴旋转一周得到的几何体叫做椭球体,记为,几何体的三视图如图所示.根据祖暅原理通过考察可以得到的体积,则的体积为( )
A. B. C. D.
【答案】D
【解析】
由三视图可得几何体是一个底面半径为,高为的圆柱,在圆柱中挖去一个以圆柱下底面圆心为顶点,上底面为底面的圆锥,由祖暅原理可得结果.
由三视图可得几何体是一个底面半径为,高为的圆柱,
在圆柱中挖去一个以圆柱下底面圆心为顶点,上底面为底面的圆锥,
则圆柱的体积为,
圆锥的体积,
利用祖暅原理可计半椭球的体积为,
所以的体积为,故选D.
练习册系列答案
相关题目
【题目】某市交管部门为了宣传新交规举办交通知识问答活动,随机对该市15~65岁的人群抽样,回答问题统计结果如图表所示.
组别 | 分组 | 回答正确的人数 | 回答正确的人数占本组的概率 |
第1组 | [15,25) | 5 | 0.5 |
第2组 | [25,35) | 0.9 | |
第3组 | [35,45) | 27 | |
第4组 | [45,55) | 0.36 | |
第5组 | [55,65) | 3 |
(1)分别求出的值;
(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.