题目内容

3.已知函数f(x)=ex-ax-b,其中a,b∈R,e=2.71828…为自然对数的底数.
(I)当b=-a时,求f(x)的极小值;
(Ⅱ)当f(x+1)+a≥0时,对x∈R恒成立,求ab的最大值;
(Ⅲ)当a>0,b=-a时,设f'(x)为f(x)的导函数,若函数f(x)有两个不同的零点x1,x2,且x1<x2,求证:f(3lna)>f′($\frac{{2{x_1}{x_2}}}{{{x_1}+{x_2}}}$).

分析 (I)显然f'(x)=ex-a,分a≤0、a>0两种情况讨论即可;
(Ⅱ)原不等式等价于ex+1≥ax+b对x∈R恒成立,分a≥0、a=0、a>0三种情况讨论即可;
(Ⅲ)由(Ⅰ)知f(x)=ex-ax+a,从而f(3lna)=a(a2-3lna+1)=$a({a}^{2}-\frac{3}{2}ln{a}^{2}+1)$,a>e2,令t=a2,$p(t)=t-\frac{3}{2}lnt+1$,t>e4,易得p(t)在(e4,+∞)上单调递增,从而$p(t)_{min}=p({e}^{4})={e}^{4}-5>0$,所以f(3lna)>0,a>e2;而$f′(\frac{2{x}_{1}{x}_{2}}{{x}_{1}+{x}_{2}})$=${e}^{\frac{2{x}_{1}{x}_{2}}{{x}_{1}+{x}_{2}}}$-a<${e}^{\frac{{x}_{1}+{x}_{2}}{2}}$-a,令T=${e}^{\frac{{x}_{1}+{x}_{2}}{2}}$-a,则可证明T<0恒成立,从而$f′(\frac{2{x}_{1}{x}_{2}}{{x}_{1}+{x}_{2}})$<0.所以有f(3lna)>f′($\frac{{2{x_1}{x_2}}}{{{x_1}+{x_2}}}$).

解答 解:(I)当b=-a时,由函数f(x)=ex-ax-b,
知f(x)=ex-ax+a,所以f'(x)=ex-a,
当a≤0时,f'(x)=ex-a>0,此时函数f(x)无极值;
当a>0时,令f'(x)=ex-a=0,得x=lna.
所以函数f(x)在(-∞,lna)上单调递减,在(lna,+∞)上单调递增,
从而f(x)min=f(lna)=2a-alna.
(Ⅱ)f(x+1)+a≥0?ex+1≥ax+b对x∈R恒成立,
显然a≥0,所以原不等式等价于b≤ex+1-ax对x∈R恒成立.
若a=0,则ab=0;
若a>0,则ab≤aex+1-a2x.
设函数h(x)=aex+1-a2x,则h′(x)=aex+1-a2=a(ex+1-a).
由h′(x)<0,解得x<lna-1;
由h′(x)>0,解得x>lna-1.
所以函数h(x)在(-∞,lna-1)上单调递减,在(lna-1,+∞)上单调递增,
故$h(x)_{min}=h(lna-1)=2{a}^{2}-{a}^{2}lna$.
设g(a)=$2{a}^{2}-{a}^{2}lna\$  (a>0),
则g′(a)=a(3-2lna),
令g′(a)=0,解得a=${e}^{\frac{3}{2}}$,
由g′(a)<0,解得a>${e}^{\frac{3}{2}}$,
由g′(a)<0,解得0<a<${e}^{\frac{3}{2}}$,
故g(a)在(0,${e}^{\frac{3}{2}}$)上单调递增,在(${e}^{\frac{3}{2}}$,+∞)上单调递减.
所以$g(a)_{max}=g({e}^{\frac{3}{2}})=\frac{1}{2}{e}^{3}$,
即ab$≤\frac{1}{2}{e}^{3}$,
综上,ab的最大值为$\frac{1}{2}{e}^{3}$.
(Ⅲ)由(Ⅰ)知f(x)=ex-ax+a,
a>0,且f'(x)=ex-a,
且函数f(x)有两个不同的零点x1,x2,且x1<x2
此时f(x)极小值=f(lna)=2a-alna<0,
解得a>e2
∵f(0)=a+1>0,
∴x2>x1>0,
从而f(3lna)=a(a2-3lna+1)=$a({a}^{2}-\frac{3}{2}ln{a}^{2}+1)$,a>e2
令t=a2,则t>e4
所以$p(t)=t-\frac{3}{2}lnt+1$,t>e4
∵$p′(t)=1-\frac{3}{2t}>$0,
∴p(t)在(e4,+∞)上单调递增,
从而$p(t)_{min}=p({e}^{4})={e}^{4}-5>0$,
故p(t)>0,所以f(3lna)>0,a>e2
而$f′(\frac{2{x}_{1}{x}_{2}}{{x}_{1}+{x}_{2}})$=${e}^{\frac{2{x}_{1}{x}_{2}}{{x}_{1}+{x}_{2}}}$-a<${e}^{\frac{{x}_{1}+{x}_{2}}{2}}$-a,
令T=${e}^{\frac{{x}_{1}+{x}_{2}}{2}}$-a,
由$\left\{\begin{array}{l}{{e}^{{x}_{1}}=a({x}_{1}-1)}\\{{e}^{{x}_{2}}=a({x}_{2}-1)}\end{array}\right.$ 可得$a=\frac{{e}^{{x}_{1}}-{e}^{{x}_{2}}}{{x}_{1}-{x}_{2}}$,
所以T=${e}^{\frac{{x}_{1}+{x}_{2}}{2}}$-a
=${e}^{\frac{{x}_{1}+{x}_{2}}{2}}$-$\frac{{e}^{{x}_{1}}-{e}^{{x}_{2}}}{{x}_{1}-{x}_{2}}$
=${e}^{\frac{{x}_{1}+{x}_{2}}{2}}$-${e}^{\frac{{x}_{1}+{x}_{2}}{2}}$•$\frac{{e}^{\frac{{x}_{1}-{x}_{2}}{2}}-{e}^{\frac{{x}_{2}-{x}_{1}}{2}}}{{x}_{1}-{x}_{2}}$,
令$\frac{{{x}_{2}-x}_{1}}{2}=λ$,则λ>0,
所以T=${e}^{\frac{{x}_{1}+{x}_{2}}{2}}$(1-$\frac{{e}^{λ}-{e}^{-λ}}{2λ}$)
=${e}^{\frac{{x}_{1}+{x}_{2}}{2}}$•$\frac{2λ-{e}^{λ}+{e}^{-λ}}{2λ}$,
令φ(λ)=2λ-eλ+e (λ>0),
则φ′(λ)=2-(eλ+e)<2-2=0,
故φ(λ)在(0,+∞)上单调递减,
所以φ(λ)<φ(0)=0,
则T<0恒成立,
从而$f′(\frac{2{x}_{1}{x}_{2}}{{x}_{1}+{x}_{2}})$=${e}^{\frac{2{x}_{1}{x}_{2}}{{x}_{1}+{x}_{2}}}$-a<${e}^{\frac{{x}_{1}+{x}_{2}}{2}}$-a<0,
综上,有f(3lna)>f′($\frac{{2{x_1}{x_2}}}{{{x_1}+{x_2}}}$).

点评 本题考查的知识点是利用导数研究函数的单调性及极值,其中解答的关键是等量代换,属难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网