题目内容
(本题12分)
已知向量,且满足.
(1)求函数的解析式和单调增区间;
(2)锐角中,若,且,,求的长.
(1)略
(2)
【解析】解(1)
(本题12分)已知向量
(1)求cos ()的值;
(2)若0<<,<<0,且sin=,求sin.
(本题12分)已知
(1) 如果,求的值;(2)如果,求的取值范围.
(本题12分)已知圆C的圆心为C(m,0),(m<3),半径为,圆C与椭圆E: 有一个公共点A(3,1),分别是椭圆的左、右焦点;
(Ⅰ)求圆C的标准方程;
(Ⅱ)若点P的坐标为(4,4),试探究斜率为k的直线与圆C能否相切,若能,求出椭
圆E和直线的方程,若不能,请说明理由。
本题12分)已知从“神七”飞船带回的某种植物种子每粒成功发芽的概率都为,某
植物研究所进行该种子的发芽实验,每次实验种一粒种子, 每次实验结果相互独立. 假定某
次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.若该
研究所共进行四次实验, 设表示四次实验结束时实验成功的次数与失败的次数之差的绝对
值.
⑴ 求随机变量的分布列及的数学期望;
⑵ 记“不等式的解集是实数集”为事件,求事件发生的概率.
(本题12分)已知集合是同时满足下列两个性质的函数组成的集合:
①在其定义域上是单调增函数或单调减函数;
②在的定义域内存在区间,使得在上的值域是.
(1)判断函数是否属于集合?并说明理由.若是,则请求出区间;
(2)若函数,求实数的取值范围.