题目内容

已知椭圆的中心在原点O,短半轴的端点到其右焦点F(2,0)的距离为,过焦点F作直线l,交椭圆于A,B两点.
(Ⅰ)求这个椭圆的标准方程;
(Ⅱ)若椭圆上有一点C,使四边形AOBC恰好为平行四边形,求直线l的斜率.
【答案】分析:(Ⅰ)设椭圆方程为,由焦点坐标可得c,由短轴端点到焦点距离可得a,根据a2=b2+c2可得b;
(Ⅱ)可判断直线l⊥x轴时,不符合题意;设直线l的方程为y=k(x-2),点A(x1,y1),B(x2,y2),把l方程代入椭圆方程消掉y得x的二次方程,由四边形AOBC为平行四边形,得,根据韦达定理可得点C的坐标,代入椭圆方程即可求得k值;
解答:解:(Ⅰ)由已知,可设椭圆方程为
则a=,c=2.
所以b===
所以椭圆方程为
(Ⅱ)若直线l⊥x轴,则平行四边形AOBC中,点C与点O关于直线l对称,此时点C坐标为(2c,0).
因为2c>a,所以点C在椭圆外,所以直线l与x轴不垂直.                  
于是,设直线l的方程为y=k(x-2),点A(x1,y1),B(x2,y2),
,整理得,(3+5k2)x2-20k2x+20k2-30=0,
,所以
因为四边形AOBC为平行四边形,所以
所以点C的坐标为
所以,解得k2=1,
所以k=±1.
点评:本题考查直线方程、椭圆方程及其位置关系,考查向量的运算,考查学生分析解决问题的能力,考查分类讨论思想,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网