题目内容

数列{an},a1=1,an+1=2an-n2+3n(n∈N*
(1)是否存在常数λ、u,使得数列{an+λn2+um}是等比数列,若存在,求出λ、u的值,若不存在,说明理由.
(2)设bn=
1
an+n-2n-1
,Sn=b1+b2+b3+…+bn,证明:当n≥2时,
6n
(n+1)(2n+1)
<Sn<
5
3
分析:(1)设an+1=2an-n2+3n,an+1=2an-λn2+(μ-2λ)n-λ-μ,由题设导出an+1=2an-n2+3n.存在λ=-1,μ=1使得数列{an+λn2+μn}是等比数列.
(2)an=2n-1+n2-n,bn=
1
an+n-2n-1
=
1
n2
,当n≥3时,由bn=
1
n2
1
n(n+1)
=
1
n
-
1
n+1
得S=b1+b2+b3+…+bn(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n
-
1
n+1
)
,由此能够导出当n≥2时,
6n
(n+1)(2n+1)
<Sn<
5
3
解答:(1)解:设an+1=2an-n2+3n,
可化为an+1+λ(n+1)2+μ(n+1)=2(an-λn2+μn),
即an+1=2an-λn2+(μ-2λ)n-λ-μ(2分)
λ=-1
μ-2λ=3
-λ-μ=0
  解得
λ=-1
μ=1
(4分)
∴an+1=2an-n2+3n
可化为(5分)
又a1+12+1≠0(6分)
故存在λ=-1,μ=1  使得数列{an+λn2+μn}是等比数列(7分)

(2)证明:由(1)得an-n2+n=(a1-12+1)•2n-1
∴an=2n-1+n2-n,
bn=
1
an+n-2n-1
=
1
n2
(8分)
bn=
1
n2
=
4
4n2
4
4n2-1
=
2
2n-1
-
2
2n+1
(9分)
∴n≥2时,Sn=b1+b2+b3+…+bn<1
+(
2
3
-
2
5
)+(
2
5
-
2
7
)+…+(
2
2n-1
-
2
2n+1
)

=1+
2
3
-
2
2n+1
5
3
(11分)
现证Sn
6n
(n+1)(2n+1)
(n≥2).
当n=2时  Sn=b1+b2=
1
4
=
5
4

6n
(n+1)(2n+1)
=
12
3×5
=
4
5
5
4
4
5

故n=2时不等式成立(12分)
当n≥3时,由bn=
1
n2
1
n(n+1)
=
1
n
-
1
n+1

Sn=b1+b2+b3+…+bn(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n
-
1
n+1
)

=1-
1
n+1
=
n
n+1
,且由2n+1>6   得1>
6
2n+1

Sn
n
n+1
6n
(n+1)(2n+1)
(14分)
点评:本题考查数列与不等式的综合应用,解题时要认真审题,仔细解答,注意计算能力的培养.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网