题目内容
已知在各项不为零的数列{an}中,a1=1,anan-1+an-an-1=0(n≥2,n∈N+)(I)求数列{an}的通项;
(Ⅱ)若数列{bn}满足bn=anan+1,数列{bn}的前n项和为Sn,求
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214125718814592/SYS201310232141257188145017_ST/0.png)
【答案】分析:(Ⅰ)整理anan-1+an-an-1=0得
判断出数列{
}为等差数列,进而求得数列{
}的通项公式,则an可得.
(Ⅱ)把(1)中的an代入bn=anan+1,求得数列{bn}的通项公式,进而根据裂项法求得数列的前n项的和,则其极限可得.
解答:解:(Ⅰ)依题意,an≠0,故可将anan-1+an-an-1=0(n≥2)整理得:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214125718814592/SYS201310232141257188145017_DA/3.png)
所以
即![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214125718814592/SYS201310232141257188145017_DA/5.png)
n=1,上式也成立,所以![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214125718814592/SYS201310232141257188145017_DA/6.png)
(Ⅱ)∵bn=anan+1
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214125718814592/SYS201310232141257188145017_DA/7.png)
∴
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214125718814592/SYS201310232141257188145017_DA/9.png)
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214125718814592/SYS201310232141257188145017_DA/10.png)
点评:本题主要考查了数列的递推式.考查了学生综合分析问题和解决问题的能力.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214125718814592/SYS201310232141257188145017_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214125718814592/SYS201310232141257188145017_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214125718814592/SYS201310232141257188145017_DA/2.png)
(Ⅱ)把(1)中的an代入bn=anan+1,求得数列{bn}的通项公式,进而根据裂项法求得数列的前n项的和,则其极限可得.
解答:解:(Ⅰ)依题意,an≠0,故可将anan-1+an-an-1=0(n≥2)整理得:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214125718814592/SYS201310232141257188145017_DA/3.png)
所以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214125718814592/SYS201310232141257188145017_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214125718814592/SYS201310232141257188145017_DA/5.png)
n=1,上式也成立,所以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214125718814592/SYS201310232141257188145017_DA/6.png)
(Ⅱ)∵bn=anan+1
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214125718814592/SYS201310232141257188145017_DA/7.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214125718814592/SYS201310232141257188145017_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214125718814592/SYS201310232141257188145017_DA/9.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214125718814592/SYS201310232141257188145017_DA/10.png)
点评:本题主要考查了数列的递推式.考查了学生综合分析问题和解决问题的能力.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目