题目内容

已知在各项不为零的数列{an}中,a1=1,anan-1+an-an-1=0(n≥2,n∈N+
(I)求数列{an}的通项;
(Ⅱ)若数列{bn}满足bn=anan+1,数列{bn}的前n项和为Sn,求
lim
n→∞
Sn
(Ⅰ)依题意,an≠0,故可将anan-1+an-an-1=0(n≥2)整理得:
1
an
-
1
an-1
=1(n≥2)

所以
1
an
=1+1×(n-1)=n
an=
1
n

n=1,上式也成立,所以an=
1
n

(Ⅱ)∵bn=anan+1
bn=
1
n
×
1
n+1
=
1
n(n+1)
=
1
n
-
1
n+1

Sn=b1+b2+b3++bn=(
1
1
-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)++(
1
n
-
1
n+1
)
=1-
1
n+1
=
n
n+1

lim
n→∞
Sn=
lim
n→∞
n
n+1
=1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网