题目内容
已知在各项不为零的数列{an}中,a1=1,anan-1+an-an-1=0(n≥2,n∈N+)
(I)求数列{an}的通项;
(Ⅱ)若数列{bn}满足bn=anan+1,数列{bn}的前n项和为Sn,求
Sn.
(I)求数列{an}的通项;
(Ⅱ)若数列{bn}满足bn=anan+1,数列{bn}的前n项和为Sn,求
lim |
n→∞ |
(Ⅰ)依题意,an≠0,故可将anan-1+an-an-1=0(n≥2)整理得:
-
=1(n≥2)
所以
=1+1×(n-1)=n即an=
n=1,上式也成立,所以an=
(Ⅱ)∵bn=anan+1
∴bn=
×
=
=
-
∴Sn=b1+b2+b3++bn=(
-
)+(
-
)+(
-
)++(
-
)=1-
=
∴
Sn=
=1
1 |
an |
1 |
an-1 |
所以
1 |
an |
1 |
n |
n=1,上式也成立,所以an=
1 |
n |
(Ⅱ)∵bn=anan+1
∴bn=
1 |
n |
1 |
n+1 |
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
∴Sn=b1+b2+b3++bn=(
1 |
1 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n |
1 |
n+1 |
1 |
n+1 |
n |
n+1 |
∴
lim |
n→∞ |
lim |
n→∞ |
n |
n+1 |
练习册系列答案
相关题目