题目内容

若x,y是正数,则(x+
1
2y
)2
+(y+
1
2x
)2
的最小值是
 
分析:先根据均值不等式求得(x+
1
2y
)
2
+(y+
1
2x
)2
≥2(x+
1
2y
)
 
(y+
1
2x
)
 
整理后,进而根据均值不等式求得(x+
1
2y
)2
+(y+
1
2x
)2
的最小值.
解答:解:(x+
1
2y
)
2
+(y+
1
2x
)2
≥2(x+
1
2y
)
 
(y+
1
2x
)
 
=2(xy+
1
4xy
+1)≥2(2×
xy
×
1
4xy
+1)=4
故答案为4
点评:本题主要考查了基本不等式是在最值问题的应用.考查了学生对均值不等式的理解和应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网