题目内容
【题目】如图,边长为的正方形与梯形所在的平面互相垂直,其中, 为的中点.
(Ⅰ)证明: 平面;
(Ⅱ)求与平面所成角的余弦值.
【答案】(1)见解析(2)
【解析】试题分析:(Ⅰ)推导出OM∥AC,由此根据线面平行的判定定理能证明OM||平面ABCD.(Ⅱ)推导出BD⊥DA,因为平面ADEF⊥平面ABCD,从而可得BD⊥平面ADEF,由此得到∠BFD的余弦值即为所求.
试题解析:
证明:(Ⅰ)∵O,M分别为EA,EC的中点, ∴OM∥AC.
∵OM平面ABCD,AC平面ABCD….∴OM∥平面ABCD
解:(Ⅱ) ∵DC=BC=1,∠BCD=90°,
∴∵. ∴BD⊥DA.
∵平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD,BD平面ABCD,
∴BD⊥平面ADEF
∴∠BFD的余弦值即为所求.
在,
∴….
∴.
练习册系列答案
相关题目