题目内容
如图,三棱柱A1B1C1―ABC的三视图中,主视图和左视图是全等的矩形,俯视图是等腰直角三角形,已知点M是A1B1的中点.
(1)求证:面AC1M⊥AA1B1B;
(2)求证:B1C∥平面AC1M.
解:由三视图可知
三棱柱A1B1C1―ABC为直三棱柱,底面是等腰直角三角形,
且∠ACB=90°.
(1)∵A1C1=B1C1,M为A1B1中点,
∴C1M⊥A1B1,
又∵面A1B1C1⊥面A1B1BA,
面A1B1C1∩面A1B1BA=A1B1,
∴C1M⊥面A1B1BA,
又∵C1M面AC1M,
∴面AC1M⊥面A1B1BA.
(2)连结A1C,设A1C∩AC1=0,连结MO,
∵A1O=CO,A1M=B1M,
∴MO∥B1C,
又∵MO面AC1M,B1C
面AC1M,
∴B1C∥面AC1M.

练习册系列答案
相关题目