题目内容
(本小题满分12分定义在R上的函数满足,当时,.
(1)求的值;
(2)比较与的大小.
解:(1)∵在R上满足,∴,∴
∴,从而,∴又,∴,∴
(2)由(1)可知
∵,∴
∵,∴,∴
∴
【解析】略
(本小题满分12分)
某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
(本小题满分12分)已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点,直线交椭圆于不同的两点A,B.(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围;(Ⅲ)若直线不过点M,试问是否为定值?并说明理由。
已知直线过抛物线的焦点且与抛物线相交于两点,自向准线作垂线,垂足分别为 .
(Ⅰ)求抛物线的方程;
(Ⅱ)证明:无论取何实数时,,都是定值;
(III)记的面积分别为,试判断是否成立,并证明你的结论.
((本小题满分12分)
如图,已知两定点,和定直线:,动点在直线上的射影为,且.
(Ⅰ)求动点的轨迹的方程并画草图;
(Ⅱ)是否存在过点的直线,使得直线与曲线相交于, 两点,且△的面积等于?如果存在,请求出直线的方程;如果不存在,请说明理由.
已知点A(1,1)是椭圆上一点,F1、F2是椭圆的两焦点,且满足|AF1|+|AF2|=4。
(I)求椭圆的标准方程;
(II)过点A(1,1)与椭圆相切的直线方程;
(III)设点C、D是椭圆上两点,直线AC、AD的倾斜角互补,试判断直线CD的斜率是否为定值?若是定值,求出定值;若不是定值,说明理由。