题目内容

已知直线y=-x+1与椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
相交于A,B两点,且OA⊥OB(O为坐标原点),若椭圆的离心率e∈[
1
2
2
2
]
,则a的最大值为
 
分析:设A(x1,y1,)、B(x2,y2),将直线y=-x+1与椭圆方程联解,消去y得到关于x的一元二次方程,根据韦达定理与直线方程求出用a、b表示x1x2+y1y2的式子,由OA⊥OB得
OA
OB
=0,从而建立关于a2、b2的等式,将a2化成关于椭圆的离心率e的代数式,根据题中离心率的范围算出a2的范围,即可算出实数a的最大值.
解答:解:设A(x1,y1,)、B(x2,y2),
y=-x+1
x2
a2
+
y2
b2
=1
消去y,可得(a2+b2)x2-2a2x+a2(1-b2)=0,
∴则x1+x2=
2a2
a2+b2
,x1x2=
a2(1-b2)
a2+b2

由△=(-2a22-4a2(a2+b2)(1-b2)>0,整理得a2+b2>1.
∴y1y2=(-x1+1)(-x2+1)=x1x2-(x1+x2)+1.
∵OA⊥OB(其中O为坐标原点),可得
OA
OB
=0
∴x1x2+y1y2=0,即x1x2+(-x1+1)(-x2+1)=0,化简得2x1x2-(x1+x2)+1=0.
∴2•
a2(1-b2)
a2+b2
-
2a2
a2+b2
+1=0.整理得a2+b2-2a2b2=0.
∵b2=a2-c2=a2-a2e2,∴代入上式,化简得2a2=1+
1
1-e2

∴a2=
1
2
(1+
1
1-e2
).
e∈[
1
2
2
2
]
,平方得
1
4
≤e2
1
2
,∴
1
2
≤1-e2
3
4
,可得
4
3
1
1-e2
≤2,
因此2a2=1+
1
1-e2
≤3,可得a2的最大值为
3
2
,满足条件a2+b2>1,
∴当椭圆的离心率e=
2
2
时,a的最大值为
3
2
=
6
2

故答案为:
6
2
点评:本题给出椭圆满足的条件,求长半轴a的最大值.着重考查了椭圆的标准方程与简单几何性质、直线与圆锥曲线的位置关系等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网