题目内容
如图所示,在边长为
的正方形
中,点
在线段
上,且
,
,作
//
,分别交
,
于点
,
,作
//
,分别交
,
于点
,
,将该正方形沿
,
折叠,使得
与
重合,构成如图所示的三棱柱
.
(1)求证:
平面
;
(2)若点E为四边形BCQP内一动点,且二面角E-AP-Q的余弦值为
,求|BE|的最小值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240524589842604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458547310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458562494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458578402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458578394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458594446.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458609456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458625356.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458640354.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458656446.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458672410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458687322.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458703288.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458718349.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458640354.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458656446.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458672410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458812319.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458828337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458625356.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458718349.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458874366.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458640354.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458906630.png)
(1)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458921396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458937490.png)
(2)若点E为四边形BCQP内一动点,且二面角E-AP-Q的余弦值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458952419.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240524589842604.png)
(1)参考解析;(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458999490.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458999490.png)
试题分析:(1)依题意可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459015472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459046472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459062798.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459077527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459093519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458921396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458937490.png)
(2)依题意建立空间直角坐标系,由平面APQ写出其法向量.假设点E(m,n,0),根据平面APE写出其法向量.再由二面角E-AP-Q的余弦值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458952419.png)
(1)在正方形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458562494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459186737.png)
所以三棱柱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458906630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459218462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459233475.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458594446.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458609456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459296653.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459452508.png)
因为四边形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458562494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459498538.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459514485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459545583.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458921396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458937490.png)
(2)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459592374.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459608390.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458625356.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459639305.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459670513.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459686596.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459701575.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459717611.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459748608.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459764655.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240524597951860.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459810716.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459842786.png)
设平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459857491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459857661.png)
则由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459888945.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459904928.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459920334.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459935428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459935547.png)
设点E(m,n,0),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240524599512115.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052459966168.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240524599821614.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240525000131286.png)
所以|BE|的最小值为点B到线段: m+2n-6="0" 的距离
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052458999490.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目