题目内容

(2007•深圳一模)已知函数f(x)=x-a
x
+lnx
(a为常数).
(Ⅰ)当a=5时,求f(x)的极值;
(Ⅱ)若f(x)在定义域上是增函数,求实数a的取值范围.
分析:(Ⅰ)求出函数的导数,令导数等于0,解得x的值,为函数的极值点,列表考查极值点两侧导数的正负,判断极值点处为极大值还是极小值,再求出极值即可.
(Ⅱ)解法1,若f(x)在定义域上是增函数,则f(x)在整个定义域上,导数大于0恒成立,得到含a和x的不等式,根据x的范围求出a的范围即可.
解法2,前面同解法1,先得到含a和x的不等式,把
1
x
看做一个整体,用t表示,则f'(x)可看做关于t的二次函数,即关于t的二次函数图象恒在x轴上方,在判断参数a份额范围.
解答:解:(Ⅰ)a=5时,f(x)=x-5
x
+lnx
,∴f′(x)=1-
5
2
x
+
1
x
(x>0)
,=
2x-5
x
+2
2x
=
(2
x
-1)(
x
-2)
2x

x o<x<
1
4
x=
1
4
1
4
<x<4
x=4 x>4
f′(x) + 0 - 0 +
f(x) 递增 极大值f(
1
4
)
递减 极小值f(4) 递增
,f(x)极大=-
9
4
-ln4
,f(x)极小=-6+ln4
(Ⅱ)解法1:∵f(x)在定义域(0,+∞)上是增函数,∴f'(x)≥0对x∈(0,+∞)恒成立,即1-
a
2
x
+
1
x
≥0(x>0)
…(8分)∴
1
2
a≤
x
+
1
x

x
+
1
x
≥2
(当且仅当x=1时,
x
+
1
x
=2
)∴(
x
+
1
x
)min=2
…(13分)∴a∈(-∞,4]
解法2:令t=
1
x
,则:g(t)=f′(x)=1-
a
2
t+t2≥0(t>0)

a
4
≤0
g(0)≥0
或      
a
4
>0
g(
a
4
)≥0

解得,a≤0,或0<a≤4,
∴a∈(-∞,4]
点评:本题主要考查了应用导数求函数的极值,判断函数的单调性,属于导数的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网