题目内容
已知函数![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_ST/0.png)
(1)求函数f(x)在[0,π]上的单调递减区间;
(2)△ABC中,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_ST/1.png)
【答案】分析:(1)将f(x)解析式利用两角和与差的正弦函数公式化为一个角的正弦函数,由正弦函数的值域表示出f(x)的最大值,由已知最大值为2列出关于m的方程,求出方程的解得到m的值,进而确定出f(x)的解析式,由正弦函数的递减区间为[2kπ+
,2kπ+
](k∈Z),列出关于x的不等式,求出不等式的解集即可得到f(x)在[0,π]上的单调递减区间;
(2)由(1)确定的f(x)解析式化简f(A-
)+f(B-
)=4
sinAsinB,再利用正弦定理化简,得出a+b=
ab①,利用余弦定理得到(a+b)2-3ab-9=0②,将①代入②求出ab的值,再由sinC的值,利用三角形的面积公式即可求出三角形ABC的面积.
解答:解:(1)f(x)=msinx+
cosx=
sin(x+θ)(其中sinθ=
,cosθ=
),
∴f(x)的最大值为
,
∴
=2,
又m>0,∴m=
,
∴f(x)=2sin(x+
),
令2kπ+
≤x+
≤2kπ+
(k∈Z),解得:2kπ+
≤x≤2kπ+
(k∈Z),
则f(x)在[0,π]上的单调递减区间为[
,π];
(2)设△ABC的外接圆半径为R,由题意C=60°,c=3,得
=
=
=
=2
,
化简f(A-
)+f(B-
)=4
sinAsinB,得sinA+sinB=2
sinAsinB,
由正弦定理得:
+
=2
×
,即a+b=
ab①,
由余弦定理得:a2+b2-ab=9,即(a+b)2-3ab-9=0②,
将①式代入②,得2(ab)2-3ab-9=0,
解得:ab=3或ab=-
(舍去),
则S△ABC=
absinC=
.
点评:此题考查了正弦、余弦定理,三角形的面积公式,两角和与差的正弦函数公式,以及正弦函数的单调性,熟练掌握定理及公式是解本题的关键.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/1.png)
(2)由(1)确定的f(x)解析式化简f(A-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/5.png)
解答:解:(1)f(x)=msinx+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/9.png)
∴f(x)的最大值为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/10.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/11.png)
又m>0,∴m=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/12.png)
∴f(x)=2sin(x+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/13.png)
令2kπ+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/18.png)
则f(x)在[0,π]上的单调递减区间为[
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/19.png)
(2)设△ABC的外接圆半径为R,由题意C=60°,c=3,得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/21.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/24.png)
化简f(A-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/28.png)
由正弦定理得:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/29.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/30.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/31.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/32.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/33.png)
由余弦定理得:a2+b2-ab=9,即(a+b)2-3ab-9=0②,
将①式代入②,得2(ab)2-3ab-9=0,
解得:ab=3或ab=-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/34.png)
则S△ABC=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/35.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103101238932424093/SYS201311031012389324240018_DA/36.png)
点评:此题考查了正弦、余弦定理,三角形的面积公式,两角和与差的正弦函数公式,以及正弦函数的单调性,熟练掌握定理及公式是解本题的关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目