题目内容

已知i,m,n是正整数,且1<i≤m<n.
(1)证明niPmi<miPni
(2)证明(1+m)n>(1+n)m
【答案】分析:(1)先将要证的不等式变形为分别含m,n的式子,再利用排列数公式,据不等式的性质得证
(2)利用二项式定理再利用(1)的结论和排列数和组合数的关系得证.
解答:证明:(1)对于1<i≤m有pmi=m••(m-i+1),
同理
由于m<n,对整数k=1,2,i-1,有
所以,即mipni>nipmi
(2)由二项式定理有

由(1)知mipni>nipmi(1<i≤m<n),

所以,miCni>niCmi(1<i≤m<n).
因此,
又mCn=nCm=1,mCn1=nCm1=mn,miCni>0(1<i≤m<n).

即(1+m)n>(1+n)m
点评:本小题考查排列、组合、二项式定理、不等式的基本知识和逻辑推理能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网