题目内容

选修4-5:不等式选讲
对于任意实数a(a≠0)和b,不等式|a+b|+|a-2b|≥|a|(|x-1|+|x-2|)恒成立,试求实数x的取值范围.
分析:
b
a
=t
,原式变为|t+1|+|2t-1|≥|x-1|+|x-2|,对任意t恒成立,故|t+1|+|2t-1|的最小值
3
2
大于或等于
|x-1|+|x-2|,从而求出实数x的取值范围.
解答:解:原式等价于
|a+b|+|a-2b|
|a|
≥|x-1|+|x-2|,设
b
a
=t

则原式变为|t+1|+|2t-1|≥|x-1|+|x-2|,对任意t恒成立.
因为|t+1|+|2t-1|=
3t    (t≥
1
2
)
-t+2   (-1<t<
1
2
)
-3t  ,(t≤-1)
,最小值在 t=
1
2
 时取到,为
3
2

所以有
3
2
≥|x-1|+|x-2|=
2x-3  (x≥2)
1  ,(1<x<2)
3-2x   (x≤1)
  解得 x∈[
3
4
9
4
].
点评:本题考查绝对值不等式的解法,体现了分类讨论的数学思想.判断|t+1|+|2t-1|的最小值
3
2
大于或等于|x-1|+|x-2|
是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网