题目内容
11.已知sin(x+$\frac{π}{6}$)=$\frac{1}{3}$,则sin(x-$\frac{5π}{6}$)+sin2(x-$\frac{π}{3}$)=$\frac{5}{9}$.分析 由已知中sin(x+$\frac{π}{6}$)=$\frac{1}{3}$,结合诱导公式和同角三角函数的基本关系公式,求出sin(x-$\frac{5π}{6}$)和sin2(x-$\frac{π}{3}$)的值,可得答案.
解答 解:∵sin(x+$\frac{π}{6}$)=$\frac{1}{3}$,
∴sin(x-$\frac{5π}{6}$)=sin[(x+$\frac{π}{6}$)-π]=-sin(x+$\frac{π}{6}$)=$-\frac{1}{3}$,
sin2(x-$\frac{π}{3}$)=sin2[(x+$\frac{π}{6}$)-$\frac{π}{2}$]=cos2(x+$\frac{π}{6}$)=1-sin2(x+$\frac{π}{6}$)=$\frac{8}{9}$,
故sin(x-$\frac{5π}{6}$)+sin2(x-$\frac{π}{3}$)=$\frac{5}{9}$,
故答案为:$\frac{5}{9}$
点评 本题考查的知识点是诱导公式,同角三角函数的基本关系公式,难度不在,属于基础题.
练习册系列答案
相关题目
1.以下向量中,可以作为直线$|{\begin{array}{l}1&0&1\\ x&2&1\\ y&1&1\end{array}}|=0$的一个方向向量是( )
A. | $\overrightarrow d=({1,-2})$ | B. | $\overrightarrow d=({1,2})$ | C. | $\overrightarrow d=({-2,1})$ | D. | $\overrightarrow d=({2,1})$ |
20.对于a,b∈R,定义运算“?”:$a?b=\left\{{\begin{array}{l}{{a^2}-ab,a≤b}\\{{b^2}-ab,a>b}\end{array}}\right.$,设f(x)=(2x-1)?(x-1),且关于x的方程f(x)=t(t∈R)恰有三个互不相等的实数根x1,x2,x3,则x1+x2+x3的取值范围是( )
A. | $(\frac{{5-\sqrt{3}}}{4},1)$ | B. | $(1,\frac{{5+\sqrt{3}}}{4})$ | C. | $(\frac{1}{2},1)$ | D. | (1,2) |