题目内容

杨辉是中国南宋末年的一位杰出的数学家、数学教育家、杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图所示是一个11阶杨辉三角:

(1)求第20行中从左到右的第4个数;
(2)若第n行中从左到右第14与第15个数的比为
23
,求n的值;
(3)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35.显然,1+3+6+10+15=35.事实上,一般地有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数.试用含有m,k(m,k∈N*)的数学公式表示上述结论,并给予证明.
分析:(1)根据数阵中数的排列规律,可得第n行的从左到右第m+1个数为Cnm,由此即可算出第20行中从左到右的第4个数的大小;
(2)由(1)的结论,建立关于n的方程并化简整理,解之可得n=34;
(3)根据题意,所求结论可表示为Cm-1m-1+Cmm-1+…+Cm+k-2m-1=Cm+k-1m(m、k∈N*且k≤m).再由组合数的性质:Cmm+Cmm-1=Cm+1m,代入等式的左边进行化简整理,即可得到该等式成立.
解答:解:(1)由题意,得第n行的从左到右第m+1个数为Cnm,(n∈N,m∈N且m≤n)
∴第20行中从左到右的第4个数为C203=
20×19×18
3×2×1
=1140;
(2)由题意,得
∵第n行中从左到右第14与第15个数的比为
2
3

Cn13
Cn14
=
2
3
,可得
n!
13!•(n-13)!
n!
14!(n-14)!
=
2
3

化简得
14
n-13
=
2
3
,解之得n=34;
(3)结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数.
用公式表示为:Cm-1m-1+Cmm-1+…+Cm+k-2m-1=Cm+k-1m(m、k∈N*且k≤m)
证明:左式=Cm-1m-1+Cmm-1+…+Cm+k-2m-1
=Cmm+Cmm-1+…+Cm+k-2m-1=Cm+1m+Cm+1m-1+…+Cm+k-2m-1
=…=Cm+k-2m+Cm+k-2m-1=Cm+k-1m=右式
即等式Cm-1m-1+Cmm-1+…+Cm+k-2m-1=Cm+k-1m(m、k∈N*且k≤m)成立.
点评:本题给出三角形数阵,求它的指定项和在m斜列中包含的等式.着重考查了组合数的性质、运用组合数解决实际应用问题、方程与恒等式的处理与证明等知识,属于中档题.
练习册系列答案
相关题目
杨辉是中国南宋末年的一位杰出的数学家、数学教育家、杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图是一个11阶杨辉三角:
(1)求第20行中从左到右的第4个数;
(2)若第n行中从左到右第14与第15个数的比为
2
3
,求n的值;
(3)求n阶(包括0阶)杨辉三角的所有数的和;
(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35.显然,1+3+6+10+15=35.事实上,一般地有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数.试用含有m、k(m,k∈N×)的数学公式表示上述结论,并给予证明.
第0行 1 第1斜列
第1行 1 1 第2斜列
第2行 1 2 1 第3斜列
第3行 1 3 3 1 第4斜列
第4行 1 4 6 4 1 第5斜列
第5行 1 5 10 10 5 1 第6斜列
第6行 1 6 15 20 15 6 1 第7斜列
第7行 1 7 21 35 35 21 7 1 第8斜列
第8行 1 8 28 56 70 56 28 8 1 第9斜列
第9行 1 9 36 84 126 126 84 36 9 1 第10斜列
第10行 1 10 45 120 210 252 210 120 45 10 1 第11斜列
第11行 1 11 55 165 330 462 462 330 165 55 11 1 第12斜列
11阶杨辉三角

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网