题目内容
【题目】已知抛物线的焦点到准线的距离为2,直线与抛物线交于不同的两点,.
(1)求抛物线的方程;
(2)是否存在与的取值无关的定点,使得直线,的斜率之和恒为定值?若存在,求出所有点的坐标;若不存在,请说明理由.
【答案】(1);(2)存在,.
【解析】
(1)本题可根据题意得出焦点坐标以及准线方程,然后根据焦点到准线的距离为2即可求出,最后根据即可求出抛物线方程;
(2)本题首先可设出、、,然后联立方程并通过韦达定理得出,再然后对进行化简并根据为与无关的常数得出,最后通过计算即可得出结果.
(1)由题意得,准线方程:,所以,抛物线方程为.
(2)假设存在定点满足题意,设,,,
联立方程,消去得,由韦达定理得,
因为直线、的斜率为、,
所以
.
要使为与无关的常数,只能,解得,,
此时为常数,
综上所述,存在定点,使得直线、的斜率之和恒为定值0.
练习册系列答案
相关题目
【题目】某公司为了对某种商品进行合理定价,需了解该商品的月销售量(单位:万件)与月销售单价(单位:元/件)之间的关系,对近个月的月销售量和月销售单价数据进行了统计分析,得到一组检测数据如表所示:
月销售单价(元/件) | ||||||
月销售量(万件) |
(1)若用线性回归模型拟合与之间的关系,现有甲、乙、丙三位实习员工求得回归直线方程分别为:,和,其中有且仅有一位实习员工的计算结果是正确的.请结合统计学的相关知识,判断哪位实习员工的计算结果是正确的,并说明理由;
(2)若用模型拟合与之间的关系,可得回归方程为,经计算该模型和(1)中正确的线性回归模型的相关指数分别为和,请用说明哪个回归模型的拟合效果更好;
(3)已知该商品的月销售额为(单位:万元),利用(2)中的结果回答问题:当月销售单价为何值时,商品的月销售额预报值最大?(精确到)
参考数据:.