题目内容
已知数列{an}的首项a1=
,an+1=
,n∈N+
(Ⅰ)设bn=
-1证明:数列{bn}是等比数列;
(Ⅱ)数列{
}的前n项和Sn.
2 |
3 |
2an |
an+1 |
(Ⅰ)设bn=
1 |
an |
(Ⅱ)数列{
n |
bn |
分析:(Ⅰ)由数列{an}的首项a1=
,an+1=
,推导出an=
.所以bn=
-1=
.由此能够证明数列{bn}是等比数列.
(Ⅱ)由bn=
,知
=n•2n,故数列{
}的前n项和Sn=1×2+2×22+3×23+…+n×2n,由此利用错位相减法能求出数列{
}的前n项和Sn.
2 |
3 |
2an |
an+1 |
2n |
2n+1 |
1 |
an |
1 |
2n |
(Ⅱ)由bn=
1 |
2n |
n |
bn |
n |
bn |
n |
bn |
解答:解:(Ⅰ)∵数列{an}的首项a1=
,an+1=
,
∴a2=
=
,
a3=
=
,
a4=
=
.
由此猜想an=
.
用数学归纳法证明:
①当n-1时,a1=
=
,成立;
②假设n=k时,等式成立,即ak=
,
则ak+1=
=
=
,成立.
∴an=
.
∴bn=
-1=
-1=
.
∵b1=
-1=
-1=
,
=
=
,
∴数列{bn}是首项为
,公比为
的等比数列.
(Ⅱ)∵bn=
,
∴
=n•2n,
∴数列{
}的前n项和
Sn=1×2+2×22+3×23+…+n×2n,①
∴2Sn=1×22+2×23+3×24+…+n×2n+1,②
①-②,得-Sn=2+22+23+24+…+2n-n×2n+1
=
-n×2n+1
=-(2-2n+1+n×2n+1),
∴Sn=2-2n+1+n×2n+1=(n-1)•2n+1+2.
2 |
3 |
2an |
an+1 |
∴a2=
2×
| ||
|
4 |
5 |
a3=
2×
| ||
|
8 |
9 |
a4=
2×
| ||
|
16 |
17 |
由此猜想an=
2n |
2n+1 |
用数学归纳法证明:
①当n-1时,a1=
21 |
21+1 |
2 |
3 |
②假设n=k时,等式成立,即ak=
2k |
2k+1 |
则ak+1=
2ak |
ak+1 |
| ||
|
2k+1 |
2k+1+1 |
∴an=
2n |
2n+1 |
∴bn=
1 |
an |
2n+1 |
2n |
1 |
2n |
∵b1=
1 |
a1 |
3 |
2 |
1 |
2 |
bn+1 |
bn |
| ||
|
1 |
2 |
∴数列{bn}是首项为
1 |
2 |
1 |
2 |
(Ⅱ)∵bn=
1 |
2n |
∴
n |
bn |
∴数列{
n |
bn |
Sn=1×2+2×22+3×23+…+n×2n,①
∴2Sn=1×22+2×23+3×24+…+n×2n+1,②
①-②,得-Sn=2+22+23+24+…+2n-n×2n+1
=
2×(1-2n) |
1-2 |
=-(2-2n+1+n×2n+1),
∴Sn=2-2n+1+n×2n+1=(n-1)•2n+1+2.
点评:本题考查等比数列的证明,考查数列的前n项和的求法,解题时要认真审题,注意数学归纳法、错位相减法和递推思想的合理运用.
练习册系列答案
相关题目