题目内容

已知数列{an}的首项a1=
1
2
,前n项和Sn=n2an(n≥1).
(1)求数列{an}的通项公式;
(2)设b1=0,bn=
Sn-1
Sn
(n≥2)
,Tn为数列{bn}的前n项和,求证:Tn
n2
n+1
分析:(1)求出Sn-1=(n-1)2an-1②和sn=n2an①,利用①-②得到数列{an}的通项公式an即可;
(2)将通项公式an代入①得到sn的通项公式,则得到bn的通项公式,列举出Tn的各项,利用等比数列的求和公式得到不等式成立.
解答:解:(1)由a1=
1
2
Sn=n2an
,①
∴Sn-1=(n-1)2an-1,②
①-②得:an=Sn-Sn-1=n2an-(n-1)2an-1
an
an-1
=
n-1
n+1
(n≥2)

an
a1
=
an
an-1
an-1
an-2
a3
a2
a2
a1
=
n-1
n+1
n-2
n
2
4
1
3
=
2
n(n+1)

an=
1
n(n+1)

(2)∵Sn=
n
n+1

bn=
Sn-1
Sn
=1-
1
n2
(n≥2)

Tn=b1+b2+…+bn=n-(
1
12
+
1
22
++
1
n2
)
<n-(1-
1
n+1
)=
n2
n+1

Tn
n2
n+1
点评:考查学生会用做差法求数列通项公式,会用等比数列的前n项和的公式求和,会进行不等式的证明.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网