题目内容
设函数f(x)=(1)若b=-6时,函数f(x)有极大值,求实数c的取值范围;
(2)在(1)的条件下,若存在实数c,使函数f(x)在闭区间[m-2,m+2]上单调递增,求实数m的取值范围.
【答案】分析:(1)由于:“方程h(x)=0有三个互异的实根.”,通过列出表格,结合导数的零点问题讨论即可;
(2)存在性问题,只需即(x-2)2(x+4)>0(*)在区间[m-2,m+2]上恒成立,最后转化为子集问题即可.
解答:解:(1)因为f(x)=
x4+bx2+cx+d,
所以h(x)=f′(x)=x3-12x+c.
由题设,方程h(x)=0有三个互异的实根.
考察函数h(x)=x3-12x+c,则h′(x)=0,得x=±2.

所以
故-16<c<16.
(2)存在c∈(-16,16),
使f′(x)≥0,即x3-12x≥-c,(*)
所以x3-12x>-16,
即(x-2)2(x+4)>0(*)在区间[m-2,m+2]上恒成立.(7分)
所以[m-2,m+2]是不等式(*)解集的子集.
所以
或m-2>2,
即-2<m<0,或m>4.(9分)
点评:本题综合考查了函数的导数,零点,极值与恒成立问题.
(2)存在性问题,只需即(x-2)2(x+4)>0(*)在区间[m-2,m+2]上恒成立,最后转化为子集问题即可.
解答:解:(1)因为f(x)=
所以h(x)=f′(x)=x3-12x+c.
由题设,方程h(x)=0有三个互异的实根.
考察函数h(x)=x3-12x+c,则h′(x)=0,得x=±2.
所以
(2)存在c∈(-16,16),
使f′(x)≥0,即x3-12x≥-c,(*)
所以x3-12x>-16,
即(x-2)2(x+4)>0(*)在区间[m-2,m+2]上恒成立.(7分)
所以[m-2,m+2]是不等式(*)解集的子集.
所以
即-2<m<0,或m>4.(9分)
点评:本题综合考查了函数的导数,零点,极值与恒成立问题.
练习册系列答案
相关题目