题目内容
下列命题中正确的有( )①若向量a与b满足a•b<0,则a与b所成角为钝角;
②若向量a与b不共线,m=λ1•a+λ2•b,n=μ1•a+μ2•b,(λ1,λ2μ1,μ2∈R),则m∥n的充要条件是λ1•μ2-λ2•μ1=0;
③若
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023211914426317906/SYS201310232119144263179007_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023211914426317906/SYS201310232119144263179007_ST/1.png)
④若a与b非零向量,a⊥b,则|a+b|=|a-b|.
A.②③④
B.①②③
C.①④
D.②
【答案】分析:通过a与b所成角为180°时a•b<0,但180°不是钝角,排除BC
若a与b非零向量且a⊥b时,|a+b|=
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023211914426317906/SYS201310232119144263179007_DA/1.png)
|a-b|=
=
,∴|a+b|=|a-b|.排除D.
解答:解:①a与b所成角为180°时a•b<0,但180°不是钝角,故①不对,排除BC
若a与b非零向量且a⊥b时,|a+b|=
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023211914426317906/SYS201310232119144263179007_DA/5.png)
|a-b|=
=
,∴|a+b|=|a-b|.成立,排除D.
故选A.
点评:本题主要考查向量的数量积的性质和利用数量积的运算求模的问题.属基础题.
若a与b非零向量且a⊥b时,|a+b|=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023211914426317906/SYS201310232119144263179007_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023211914426317906/SYS201310232119144263179007_DA/1.png)
|a-b|=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023211914426317906/SYS201310232119144263179007_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023211914426317906/SYS201310232119144263179007_DA/3.png)
解答:解:①a与b所成角为180°时a•b<0,但180°不是钝角,故①不对,排除BC
若a与b非零向量且a⊥b时,|a+b|=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023211914426317906/SYS201310232119144263179007_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023211914426317906/SYS201310232119144263179007_DA/5.png)
|a-b|=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023211914426317906/SYS201310232119144263179007_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023211914426317906/SYS201310232119144263179007_DA/7.png)
故选A.
点评:本题主要考查向量的数量积的性质和利用数量积的运算求模的问题.属基础题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目