题目内容
解下列各题:
(Ⅰ)计算:2log510+log50.4-3log52;
(Ⅱ)已知x,y∈R+,且3x=22y=6,求
+
的值.
(Ⅰ)计算:2log510+log50.4-3log52;
(Ⅱ)已知x,y∈R+,且3x=22y=6,求
1 |
x |
1 |
2y |
分析:(Ⅰ)运用对数式的运算性质,把对数符号前面的系数拿到真数上,然后运用乘积和商的对数的逆运算化简;
(Ⅱ)变指数式为对数式,求出x和2y后代入要求的分式,最后利用对数式的运算性质化简求值.
(Ⅱ)变指数式为对数式,求出x和2y后代入要求的分式,最后利用对数式的运算性质化简求值.
解答:解:(Ⅰ)原式=log5102+log50.4-log523
=log5(100×0.4÷8)
=log55
=1.
(Ⅱ)∵x,y∈R+,且3x=22y=6,
∴x=log36,2y=log26.
∴
+
=
+
=log63+log62
=log6(3×2)
=1.
=log5(100×0.4÷8)
=log55
=1.
(Ⅱ)∵x,y∈R+,且3x=22y=6,
∴x=log36,2y=log26.
∴
1 |
x |
1 |
2y |
1 |
log36 |
1 |
log26 |
=log63+log62
=log6(3×2)
=1.
点评:本题考查了对数式的运算性质,考查了函数值的求法,解答的关键是熟记有关性质,此题是基础题.
练习册系列答案
相关题目