题目内容

若数列{an}中an=-n2+6n+7,则其前n项和Sn取最大值时,n=(  )
分析:数列{an}中,由an=-n2+6n+7=-(n-3)2+16,知a6=7,a7=0,a8=-9,由此能求出前n项和Sn取最大值时,n的值.
解答:解:数列{an}中,
an=-n2+6n+7=-(n-3)2+16,
∴由an≥0,得n-3≤4.
∴a6=7,a7=0,a8=-9,
∴前n项和Sn取最大值时,n=6,或n=7.
故选D.
点评:本题考查数列的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网