题目内容

精英家教网某高校在2010年的自主招生考试中随机抽取了100名学生的笔试成绩,按成绩分组:第一组[160,165),第二组[165,170),第三组[170,175),第四组[175,180),第五组[180,185)得到的频率分布直方图如图所示,
(1)求第三、四、五组的频率;
(2)为了以选拔出最优秀的学生,学校决定在笔试成绩高的第三、四、五组中用分层抽样抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.
(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第四组至少有一名学生被甲考官面试的概率.
分析:(1)利用频率分布直方图中的频率=纵坐标×组据,求出第三、四、五组的频率;
(2)利用频数=频率×样本容量求出各组的人数;求出各组人数与样本容量的比,再乘以6求出各组抽出的人数.
(3)通过列举法得到从6名学生中抽2名所有的结果及第四组至少有一名学生被甲考官面试的结果;利用古典概型概率公式求出概率.
解答:解:(1)由题设可知,第三组的频率为0.06×5=0.3
第四组的频率为0.04×5=0.2
第五组的频率为0.02×5=0.
(2)第三组的人数为0.3×100=30
第四组的人数为0.2×100=20
第五组的人数为0.1×100=10
因为第三、四、五组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组抽到的人数分别为:第三组
30
60
×6=3

第四组
20
60
×6=2

第五组
10
60
×6=1

所以第三、四、五组分别抽取3人,2人,1人.
(3)设第三组的3位同学为A1,A2,A3,第四组的2位同学为B1,B2
第五组的1位同学为C1
则从6位同学中抽2位同学有:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2)(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1)共15种可能
其中第四组的2位同学B1,B2中至少1位同学入选有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2)(B1,B2),(B1,C1),(B2,C1)共9种可能
所以第四组至少有1位同学被甲考官面试的概率为
9
15
=
3
5
点评:本题考查频率分布直方图中频率的公式是:频率=纵坐标×组据; 频数的公式:频数=频率×样本容量
考查分层抽样及古典概型的概率公式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网