题目内容
6.已知各项均为正数的数列{an}的前n项和为{Sn}.满足a2n+1=2Sn+n+4,a2-1,a3,a7恰为等比数列{bn}的前3项.(1)求数列{an},{bn}的通项公式;
(2)若Cn=(-1)nlog2bn-$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{cn}的前n项和Tn.
分析 (1)由已知得n≥2时,a2n=2Sn-1+n-1+4,与已知相减得${{a}_{n+1}}^{2}={{a}_{n}}^{2}+2{a}_{n}+1$=(an+1)2,由$\left\{\begin{array}{l}{{a}_{2}={a}_{1}+1}\\{{{a}_{2}}^{2}=2{a}_{1}+1+4}\end{array}\right.$,解得a1=2,再结合a2-1,a3,a7恰为等比数列{bn}的前3项,能求出数列{an},{bn}的通项公式.
(2)由cn=(-1)nlog2bn-$\frac{1}{{a}_{n}{a}_{n+1}}$=(-1)n•n-$\frac{1}{(n+1)(n+2)}$=(-1)n•n-($\frac{1}{n+1}-\frac{1}{n+2}$),利用分组求和法和裂项求和法能求出数列{cn}的前n项和Tn.
解答 解:(1)∵各项均为正数的数列{an}的前n项和为{Sn},满足a2n+1=2Sn+n+4,①
∴n≥2时,a2n=2Sn-1+n-1+4,②
①-②,得:${{a}_{n+1}}^{2}-{{a}_{n}}^{2}$=2an+1,
∴${{a}_{n+1}}^{2}={{a}_{n}}^{2}+2{a}_{n}+1$=(an+1)2,
∵an>0,∴an+1=an+1,
∴数列{an}是公差为1的等差数列,
又$\left\{\begin{array}{l}{{a}_{2}={a}_{1}+1}\\{{{a}_{2}}^{2}=2{a}_{1}+1+4}\end{array}\right.$,解得a1=2或a1=-2(舍),
∴an=2+(n-1)×1=n+1.
∵a2-1,a3,a7恰为等比数列{bn}的前3项,
∴b1=2+1-1=2,b2=a3=3+1=4,b3=a7=7+1=8,
∴q=$\frac{{b}_{2}}{{b}_{1}}$=$\frac{4}{2}=2$,
∴${b}_{n}=2×{2}^{n-1}$=2n.
(2)cn=(-1)nlog2bn-$\frac{1}{{a}_{n}{a}_{n+1}}$=(-1)n•n-$\frac{1}{(n+1)(n+2)}$=(-1)n•n-($\frac{1}{n+1}-\frac{1}{n+2}$),
当n为偶数时,
Tn=(-1+2-3+4-5+…+n)-($\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n+1}-\frac{1}{n+2}$)
=$\frac{n}{2}$-$\frac{1}{2}+\frac{1}{n+2}$,
当n为奇数时,
Tn=(-1+2-3+4-5+…-n)-($\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n+1}-\frac{1}{n+2}$)
=$\frac{n-1}{2}-n$-$\frac{1}{2}+\frac{1}{n+2}$
=$\frac{1}{n+2}-\frac{1}{2}-\frac{n+1}{2}$.
点评 本题考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意等差数列、等比数列的性质和分组求和法及裂项求和法的合理运用.
A. | f(x)=1,g(x)=x0 | B. | f(x)=$\frac{{x}^{2}}{x}$,g(x)=$\root{3}{{x}^{3}}$ | C. | f(x)=1gx2,g(x)=21gx | D. | f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$ |