题目内容
8.如图,已知圆上的弦AC=BD,过C点的圆的切线与BA的延长线交于E点.(Ⅰ)求证:∠ACE=∠BCD;
(Ⅱ)若BE=8,CD=2,求BC的长.
分析 (I)由同圆中等圆弧的性质可得∠ABC=∠BCD.由弦切角定理可得∠ACE=∠ABC,即可得出证明.
(II)利用弦切角定理可得∠CDB=∠BCE,由相似三角形的判定定理可得△BEC∽△CBD,由相似三角形的性质可得$\frac{CD}{BC}=\frac{BC}{EB}$,即可求出BC.
解答 (Ⅰ)证明:∵弦AC=BD,∴∠ABC=∠BCD.
又∵EC为圆的切线,∴∠ACE=∠ABC,
∴∠ACE=∠BCD.
(Ⅱ)解:∵EC为圆的切线,∴∠CDB=∠BCE,
由(Ⅰ)可得∠BCD=∠ABC.
∴△BEC∽△CBD,∴$\frac{CD}{BC}=\frac{BC}{EB}$,
∴BC2=CD•EB=2×8=16,解得BC=4.
点评 熟练掌握同圆中等圆弧的性质、弦切角定理、相似三角形的判定和性质定理是解题的关键.
练习册系列答案
相关题目
3.函数f(x)=$\left\{\begin{array}{l}{3,x≥m}\\{{x}^{2}+4x+2,x<m}\end{array}\right.$,函数g(x)=f(x)-x恰有三个零点,则实数m的取值范围为( )
A. | [-2,3] | B. | [-1,3] | C. | (-2,3] | D. | (-1,3] |
20.在棱长为3的正方体ABCD-A1B1C1D1中,P在线段BD1上,且$\frac{BP}{P{D}_{1}}=\frac{1}{2}$,M为线段B1C1上的动点,则三棱锥M-PBC的体积为( )
A. | 1 | B. | $\frac{3}{2}$ | C. | $\frac{9}{2}$ | D. | 与M点的位置有关 |