题目内容
如图,S(1,1)是抛物线为y2=2px(p>0)上的一点,弦SC,SD分别交x轴于A,B两点,且SA=SB.(I)求证:直线CD的斜率为定值;
(Ⅱ)延长DC交x轴于点E,若|EC|=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_ST/images1.png)
【答案】分析:(1)将点(1,1)代入y2=2px,得2p=1,抛物线方程为y2=x,设直线SA的方程为y-1=k(x-1),C(x1,y1),与抛物线方程y2=x联立得:ky2-y+1-k=0.再由根与系数的关系能够导出直线CD的斜率为定值.
(2)设E(t,0),由|EC|=
|DE|,得
,知
,解得k=2,所以直线SA的方程为y=2x-1,由此能求出cos∠CSD=cos∠ASB的值,利用二倍角公式即可求得结果.
解答:解:(1)将点(1,1)代入y2=2px,得2p=1
∴抛物线方程为y2=x
设直线SA的方程为y-1=k(x-1),C(x1,y1)
与抛物线方程y2=x联立得:ky2-y+1-k=0
∴y1+1=
∴y1=
-1
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_DA/5.png)
由题意有SA=SB,∴直线SB的斜率为-k
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_DA/6.png)
∴
;
(2)设E(t,0)
∵|EC|=
|DE|,
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_DA/9.png)
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_DA/11.png)
∴k=2
∴直线SA的方程为y=2x-1
∴A(
,0)
同理B(
,0)
∴cos∠CSD=cos∠ASB=
.
∴cos2∠CSD=2cos2∠ASB-1=-
.
点评:本题考查直线和圆锥曲线的位置关系,解题时要认真审题,注意公式的合理运用,考查分析问题和解决问题的能力和运算能力,属中档题.
(2)设E(t,0),由|EC|=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_DA/2.png)
解答:解:(1)将点(1,1)代入y2=2px,得2p=1
∴抛物线方程为y2=x
设直线SA的方程为y-1=k(x-1),C(x1,y1)
与抛物线方程y2=x联立得:ky2-y+1-k=0
∴y1+1=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_DA/5.png)
由题意有SA=SB,∴直线SB的斜率为-k
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_DA/6.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_DA/7.png)
(2)设E(t,0)
∵|EC|=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_DA/8.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_DA/9.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_DA/11.png)
∴k=2
∴直线SA的方程为y=2x-1
∴A(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_DA/12.png)
同理B(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_DA/13.png)
∴cos∠CSD=cos∠ASB=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_DA/14.png)
∴cos2∠CSD=2cos2∠ASB-1=-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125031097912100/SYS201310251250310979121020_DA/15.png)
点评:本题考查直线和圆锥曲线的位置关系,解题时要认真审题,注意公式的合理运用,考查分析问题和解决问题的能力和运算能力,属中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目