题目内容

设O是正三棱锥P-ABC底面是三角形ABC的中心,过O的动平面与PC交于S,与PA、PB的延长线分别交于Q、R,则和式(    )

    A.有最大值而无最小值                   B.有最小值而无最大值

    C.既有最大值又有最小值,两者不等       D.是一个与面QPS无关的常数

D


解析:

设正三棱锥P-ABC中,各侧棱两两夹角为α,PC与面PAB所成角为β,则vS-PQR=S△PQR·h=PQ·PRsinα)·PS·sinβ。另一方面,记O到各面的距离为d,则vS-PQR=vO-PQR+vO-PRS+vO-PQSS△PQR·d=△PRS·d+S△PRS·d+△PQS·d=PQ·PRsinα+PS·PRsinα+PQ·PS·sinα,故有:PQ·PR·PS·sinβ=d(PQ·PR+PR·PS+PQ·PS),即=常数。故选D。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网