题目内容

精英家教网在△ABC中,E、F分别为AB、AC上的点,若
AE
AB
=m,
AF
AC
=n,则
S△AEF
S△ABC
=mn.拓展到空间:在三棱锥S-ABC中,D、E、F分别是侧棱SA、SB、SC上的点,若
SD
DA
=m,
SE
EB
=n,
SF
FC
=p,则
VS-DEF
VS-ABC
=
 
分析:在由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质.由在△ABC中,E、F分别为AB、AC上的点,若
AE
AB
=m,
AF
AC
=n,则
S△AEF
S△ABC
=mn(面的性质),我们可以推断:在三棱锥S-ABC中,D、E、F分别是侧棱SA、SB、SC上的点,若
SD
DA
=m,
SE
EB
=n,
SF
FC
=p时,三棱锥的体积的性质.
解答:解:在类比推理时,我们可以
由平面图形中点的性质类比推理出空间里的线的性质,
由平面图形中线的性质类比推理出空间中面的性质,
由平面图形中面的性质类比推理出空间中体的性质.
由在△ABC中,E、F分别为AB、AC上的点,
AE
AB
=m,
AF
AC
=n,则
S△AEF
S△ABC
=mn(面的性质),
我们可以推断:在三棱锥S-ABC中,D、E、F分别是侧棱SA、SB、SC上的点,
SD
DA
=m,
SE
EB
=n,
SF
FC
=p时,
VS-DEF
VS-ABC
=
mnp
(m+1)(n+1)(p+1)

故答案为:
mnp
(m+1)(n+1)(p+1)
点评:本题考查的知识点是类比推理,在由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网