题目内容

(2008•深圳二模)在△ABC中,A=
π
4
cosB=
10
10

(1)求cosC;
(2)设BC=
5
,求
CA
CB
的值.
分析:(1)由C=π-(A+B),及A=
π
4
cosB=
10
10
,故可用cosC=-cos(
π
4
+B)
利用余弦和角公式求出余弦值;
(2)由正弦定理求出AC的值,由公式
CA
CB
=|
CA
|•|
CB
|•cosC
求出内积的值
解答:解:(1)由cosB=
10
10
,B∈(0,π),得sinB=
3
10
10
…(2分)
∵C=π-(A+B),∴cosC=-cos(
π
4
+B)
,…(4分)
cosC=-cos
π
4
cosB+sin
π
4
sinB

cosC=
5
5
…(7分)
(2)根据正弦定理得
BC
sinA
=
AC
sinB
⇒AC=
BC•sinB
sinA
,…(9分)
sinB=
3
10
10
,得AC=
BC•sinB
sinA
=
5
3
10
10
2
2
=3
,…(12分)
CA
CB
=|
CA
|•|
CB
|•cosC=3
.…(14分)
点评:本题考查正弦定理及数量积公式、余弦的和角公式,解题的关键是熟练掌握定理与公式,利用定理公式建立方程求出未知量,本题是基本概念考查题,涉及到的公式较多,综合性强,易因为知识掌握不全导致解题失败,掌握全面基础知识是正确解此类题的保障.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网