题目内容
(2008•深圳二模)已知数列{an}满足a1=a,an+1=
(n∈N*).
(Ⅰ)试判断数列{
}是否为等比数列?若不是,请说明理由;若是,试求出通项an.
(Ⅱ)如果a=1时,数列{an}的前n项和为Sn.试求出Sn,并证明
+
+…+
<
(n≥3).
(4n+6)an+4n+10 |
2n+1 |
(Ⅰ)试判断数列{
an+2 |
2n+1 |
(Ⅱ)如果a=1时,数列{an}的前n项和为Sn.试求出Sn,并证明
1 |
S3 |
1 |
S4 |
1 |
Sn |
1 |
10 |
分析:(Ⅰ)由an+1+2=
+2=
,知
=2•
.令bn=
,则bn+1=2bn.由此能够求出an=
•2n-1-2.
(Ⅱ)当a=1时,an=(2n+1)•2n-1-2,Sn=3+5•2+7•22+…+(2n+1)•2n-1-2n.令Tn=3+5•2+7•22+…+(2n+1)•2n-1,则2Tn=3•2+5•22+…+(2n-1)•2n-1+(2n+1)•2n,再由错位相减法和裂项求和法进行求解.
(4n+6)an+4n+10 |
2n+1 |
(4n+6)(an+2) |
2n+1 |
an+1+2 |
2n+3 |
(an+2) |
2n+1 |
an+2 |
2n+1 |
(a+2)(2n+1) |
3 |
(Ⅱ)当a=1时,an=(2n+1)•2n-1-2,Sn=3+5•2+7•22+…+(2n+1)•2n-1-2n.令Tn=3+5•2+7•22+…+(2n+1)•2n-1,则2Tn=3•2+5•22+…+(2n-1)•2n-1+(2n+1)•2n,再由错位相减法和裂项求和法进行求解.
解答:解:(Ⅰ)∵an+1+2=
+2=
,
∴
=2•
.
令bn=
,则bn+1=2bn. …2分
∵b1=
,
∴当a=-2时,b1=0,则bn=0.
∵数列{0}不是等比数列.
∴当a=-2时,数列{
}不是等比数列.…4分
当a≠-2时,b1≠0,则数列{
}是等比数列,且公比为2.
∴bn=b1•2n-1,
即
=
•2n-1.
解得an=
•2n-1-2. …6分
(Ⅱ)由(Ⅰ)知,当a=1时,an=(2n+1)•2n-1-2,
Sn=3+5•2+7•22+…+(2n+1)•2n-1-2n.
令Tn=3+5•2+7•22+…+(2n+1)•2n-1,…①
则2Tn=3•2+5•22+…+(2n-1)•2n-1+(2n+1)•2n,…②
由①-②:-Tn=3+2(2+22+…+2n-1)-(2n+1)•2n
=3+2•
-(2n+1)•2n
=(1-2n)•2n-1,
∴Tn=(2n-1)•2n+1,…9分
则Sn=Tn-2n=(2n-1)(2n-1). …10分
∵2n=Cn0+Cn1+…+Cnn-1+Cnn,
∴当n≥3时,2n≥Cn0+Cn1+Cnn-1+Cnn=2(n+1),则2n-1≥2n+1.…12分
∴Sn≥(2n-1)(2n+1),
则
≤
=
(
-
).…13分
因此,
+
+…+
≤
[(
-
)+(
-
)+…+(
-
)]=
(
-
)<
. …14分.
(4n+6)an+4n+10 |
2n+1 |
(4n+6)(an+2) |
2n+1 |
∴
an+1+2 |
2n+3 |
(an+2) |
2n+1 |
令bn=
an+2 |
2n+1 |
∵b1=
a+2 |
3 |
∴当a=-2时,b1=0,则bn=0.
∵数列{0}不是等比数列.
∴当a=-2时,数列{
an+2 |
2n+1 |
当a≠-2时,b1≠0,则数列{
an+2 |
2n+1 |
∴bn=b1•2n-1,
即
an+2 |
2n+1 |
a+2 |
3 |
解得an=
(a+2)(2n+1) |
3 |
(Ⅱ)由(Ⅰ)知,当a=1时,an=(2n+1)•2n-1-2,
Sn=3+5•2+7•22+…+(2n+1)•2n-1-2n.
令Tn=3+5•2+7•22+…+(2n+1)•2n-1,…①
则2Tn=3•2+5•22+…+(2n-1)•2n-1+(2n+1)•2n,…②
由①-②:-Tn=3+2(2+22+…+2n-1)-(2n+1)•2n
=3+2•
2(1-2n-1) |
1-2 |
=(1-2n)•2n-1,
∴Tn=(2n-1)•2n+1,…9分
则Sn=Tn-2n=(2n-1)(2n-1). …10分
∵2n=Cn0+Cn1+…+Cnn-1+Cnn,
∴当n≥3时,2n≥Cn0+Cn1+Cnn-1+Cnn=2(n+1),则2n-1≥2n+1.…12分
∴Sn≥(2n-1)(2n+1),
则
1 |
Sn |
1 |
(2n-1)(2n+1) |
1 |
2 |
1 |
2n-1 |
1 |
2n+1 |
因此,
1 |
S3 |
1 |
S4 |
1 |
Sn |
1 |
2 |
1 |
5 |
1 |
7 |
1 |
7 |
1 |
9 |
1 |
2n-1 |
1 |
2n+1 |
1 |
2 |
1 |
5 |
1 |
2n+1 |
1 |
10 |
点评:本题考查数列与不等式的综合运用,解题时要认真审题,注意错位相减法和裂项求和法的灵活运用.
练习册系列答案
相关题目