题目内容

(2008•深圳二模)已知数列{an}满足a1=a,an+1=
(4n+6)an+4n+10
2n+1
(n∈N*)

(Ⅰ)试判断数列{
an+2
2n+1
}
是否为等比数列?若不是,请说明理由;若是,试求出通项an
(Ⅱ)如果a=1时,数列{an}的前n项和为Sn.试求出Sn,并证明
1
S3
+
1
S4
+…+
1
Sn
1
10
(n≥3).
分析:(Ⅰ)由an+1+2=
(4n+6)an+4n+10
2n+1
+2
=
(4n+6)(an+2)
2n+1
,知
an+1+2
2n+3
=2•
(an+2)
2n+1
.令bn=
an+2
2n+1
,则bn+1=2bn.由此能够求出an=
(a+2)(2n+1)
3
2n-1-2

(Ⅱ)当a=1时,an=(2n+1)•2n-1-2,Sn=3+5•2+7•22+…+(2n+1)•2n-1-2n.令Tn=3+5•2+7•22+…+(2n+1)•2n-1,则2Tn=3•2+5•22+…+(2n-1)•2n-1+(2n+1)•2n,再由错位相减法和裂项求和法进行求解.
解答:解:(Ⅰ)∵an+1+2=
(4n+6)an+4n+10
2n+1
+2
=
(4n+6)(an+2)
2n+1

an+1+2
2n+3
=2•
(an+2)
2n+1

bn=
an+2
2n+1
,则bn+1=2bn.  …2分
b1=
a+2
3

∴当a=-2时,b1=0,则bn=0.
∵数列{0}不是等比数列.
∴当a=-2时,数列{
an+2
2n+1
}
不是等比数列.…4分
当a≠-2时,b1≠0,则数列{
an+2
2n+1
}
是等比数列,且公比为2.
∴bn=b1•2n-1
an+2
2n+1
=
a+2
3
2n-1

解得an=
(a+2)(2n+1)
3
2n-1-2
.      …6分
(Ⅱ)由(Ⅰ)知,当a=1时,an=(2n+1)•2n-1-2,
Sn=3+5•2+7•22+…+(2n+1)•2n-1-2n.
令Tn=3+5•2+7•22+…+(2n+1)•2n-1,…①
则2Tn=3•2+5•22+…+(2n-1)•2n-1+(2n+1)•2n,…②
由①-②:-Tn=3+2(2+22+…+2n-1)-(2n+1)•2n
=3+2•
2(1-2n-1)
1-2
-(2n+1)•2n

=(1-2n)•2n-1,
∴Tn=(2n-1)•2n+1,…9分
则Sn=Tn-2n=(2n-1)(2n-1).             …10分
∵2n=Cn0+Cn1+…+Cnn-1+Cnn
∴当n≥3时,2n≥Cn0+Cn1+Cnn-1+Cnn=2(n+1),则2n-1≥2n+1.…12分
∴Sn≥(2n-1)(2n+1),
1
Sn
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
.…13分
因此,
1
S3
+
1
S4
+…+
1
Sn
1
2
[(
1
5
-
1
7
)+(
1
7
-
1
9
)+…+(
1
2n-1
-
1
2n+1
)]
=
1
2
(
1
5
-
1
2n+1
)<
1
10
. …14分.
点评:本题考查数列与不等式的综合运用,解题时要认真审题,注意错位相减法和裂项求和法的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网