题目内容
已知双曲线的离心率为,左顶点到一条渐近线的距离为,则该双曲线的标准方程为( )
A. B.
C. D.
一个几何体的三视图如图所示,则该几何体的体积为 .
已知椭圆C: ,离心率为,左准线方程是,设O为原点,点A在椭圆C上,点B在直线y=2上,且OA⊥OB.
(1)求椭圆C的方程;
(2)求ΔAOB面积取得最小值时,线段AB的长度;
选修4-5:不等式选讲
已知使不等式成立.
(1)求满足条件的实数的取值集合;
(2)若,对,不等式恒成立,求的最小值.
已知三棱锥的所有顶点都在球的球面上,是边长为1的正三角形,为球的直径,该三棱锥的体积为,则球的表面积为__________.
已知,给出下列四个结论:
①②③④
其中正确结论的序号是( )
A.①② B.②③ C.②④ D.③④
选修4-4:坐标系与参数方程
在平面直角坐标系中,已知曲线,以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.
(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的倍后得到曲线.试写出直线的直角坐标方程和曲线的参数方程:
(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.
已知倾斜角为的直线过轴上一点(非坐标原点),直线上有一点,且,则等于( )
A.100° B.160° C.100°或160° D.130°
已知,定义.
(1)求函数的极值;
(2)若,且存在使,求实数的取值范围;
(3)若,试讨论函数的零点个数.