题目内容

设n为正整数,规定:fn(x)=
f{f[…f(x)…]}
n个f
,已知f(x)=
2(1-x)(0≤x≤1)
x-1(1<x≤2)

(1)解不等式:f(x)≤x;
(2)设集合A={0,1,2},对任意x∈A,证明:f3(x)=x;
(3)求f2008(
8
9
)
的值.
分析:(1)因为是分段函数,所以先根据定义域选择解析式来构造不等式,
当0≤x≤1时,由2(1-x)≤x求解;
当1<x≤2时,由x-1≤x求解,取后两个结果取并集.

(2)先求得f(0),f(1),f(2),
再分别求得f(f(0)),f(f(f(0)));f(f(1)),f(f(f(1)));
f(f(2)).再观察与自变量是否相等即可.
(3)看问题有2008重求值,一定用到周期性,所以先求出f1(
8
9
)=2(1-
8
9
)=
2
9
f2(
8
9
)=f(f(
8
9
))=f(
2
9
)=
14
9
f3(
8
9
)=f(f2(
8
9
))=f(
14
9
)=
14
9
-1=
5
9
f4(
8
9
)=f(f3(
8
9
))=f(
5
9
)=2(1-
5
9
)=
8
9
,观察是以4为周期,有f4k+r(
8
9
)=fr(
8
9
)
(k,r∈N)求解..
解答:解:(1)①当0≤x≤1时,由2(1-x)≤x得,x≥
2
3

2
3
≤x≤1.
②当1<x≤2时,因x-1≤x恒成立.
∴1<x≤2.
由①,②得,f(x)≤x的解集为{x|
2
3
≤x≤2}.

(2)∵f(0)=2,f(1)=0,f(2)=1,
∴当x=0时,f3(0)=f(f(f(0)))=f(-f(2))=f(1)=0;
当x=1时,f3(1)=f(f(f(1)))=f(f(0))=f(2)=1;
当x=2时,f3(2)=f(f(f(2)))=f(f(1))=f(0)=2.
即对任意x∈A,恒有f3(x)=x.

(3)f1(
8
9
)=2(1-
8
9
)=
2
9

f2(
8
9
)=f(f(
8
9
))=f(
2
9
)=
14
9

f3(
8
9
)=f(f2(
8
9
))=f(
14
9
)=
14
9
-1=
5
9

f4(
8
9
)=f(f3(
8
9
))=f(
5
9
)=2(1-
5
9
)=
8
9

一般地,f4k+r(
8
9
)=fr(
8
9
)
(k,r∈N).
f2008(
8
9
)=f0(
8
9
)=
8
9
点评:本题主要考查求解分段函数构造的不等式,要注意分类讨论,还考查了分段函数多重求值,要注意从内到外,根据自变量取值选择好解析式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网