题目内容
(本小题满分16分)
已知数列满足,(1)若,求;
(2)是否存在,使当时,恒为常数。若存在求,否则说明理由;
(3)若,求的前项的和(用表示)
已知数列满足,(1)若,求;
(2)是否存在,使当时,恒为常数。若存在求,否则说明理由;
(3)若,求的前项的和(用表示)
解: (1)设,过圆心作于,交长轴于
由得,即 (1)
而点在椭圆上, (2)
由(1)、 (2)式得,解得或(舍去)
(2) 设过点与圆相切的直线方程为: (3)
则,即 (4)
解得
将(3)代入得,则异于零的解为
设,,则
则直线的斜率为:
于是直线的方程为: 即
则圆心到直线的距离 故结论成立.
由得,即 (1)
而点在椭圆上, (2)
由(1)、 (2)式得,解得或(舍去)
(2) 设过点与圆相切的直线方程为: (3)
则,即 (4)
解得
将(3)代入得,则异于零的解为
设,,则
则直线的斜率为:
于是直线的方程为: 即
则圆心到直线的距离 故结论成立.
略
练习册系列答案
相关题目