题目内容

已知函数f(x)=kx+b(k≠0)的图象与x、y轴分别相交于点A、B两点,向量
AB
=(2,2),又函数g(x)=x2-x-6,且y=g(x)+m的值域是[0,+∞).
(1)求k,b及m的值;
(2)当x满足f(x)>g(x)时,求函数
g(x+2)+10
f(x)
的最小值.
分析:(1)先求出点A、B的坐标,根据向量相等即可求出k,b;根据二次函数的判别式与值域的关系即可求出m;
(2)利用基本不等式的性质即可求出.
解答:解:(1)∵函数f(x)=kx+b(k≠0)的图象与x、y轴分别相交于点A、B两点,
A(-
b
k
,0)
,B(0,b),∴
AB
=(
b
k
,b)

∵向量
AB
=(2,2),∴
b
k
=2
b=2
,解得
k=1
b=2

∵函数g(x)=x2-x-6+m的值域是[0,+∞),
∴△=1-4(m-6)=0,解得m=
25
4

(2)由(1)可知:f(x)=x+2,
∵f(x)>g(x),∴x+2>x2-x-6,
化为x2-2x-8<0,∴(x-4)(x+2)<0,∴-2<x<4.
∴函数
g(x+2)+10
f(x)
=
(x+2)2-(x+2)+4
x+2
=(x+2)+
4
x+2
-1,
∵0<x+2<6,∴(x+2)+
4
x+2
2
(x+2)×
4
x+2
=4,当且仅当x+2=2,即x=0时等号成立,
∴x=0时,
g(x+2)+10
f(x)
的最小值是3.
点评:熟练掌握向量相等、二次函数的性质及基本不等式的性质是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网