题目内容
如图,多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF∥AB,平面FBC⊥面ABCD,△FBC中BC边上的高FH=2,EF=
,则该多面体的体积为( )
3 |
2 |
分析:由已知中多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF与面AC的距离为2,我们易求出四棱锥E-ABCD的体积,然后根据由题意求出VF-ABCD与几何体的体积,即可得到正确选项.
解答:解:∵多面体ABCDEF中,
面ABCD是边长为3的正方形,
EF∥AB,平面FBC⊥面ABCD,
△FBC中BC边上的高FH=2,EF=
,
∴EF∥平面ABCD,
则G到平面ABCD的距离2,
将几何体变形如图,使得FG=AB,
三棱锥E-BCG的体积为:
×
×3×2×
=
,
∴原几何体的体积为:
×3×2×3-
=
.
故选B.
面ABCD是边长为3的正方形,
EF∥AB,平面FBC⊥面ABCD,
△FBC中BC边上的高FH=2,EF=
3 |
2 |
∴EF∥平面ABCD,
则G到平面ABCD的距离2,
将几何体变形如图,使得FG=AB,
三棱锥E-BCG的体积为:
1 |
3 |
1 |
2 |
3 |
2 |
3 |
2 |
∴原几何体的体积为:
1 |
2 |
3 |
2 |
15 |
2 |
故选B.
点评:本题考查的知识点是组合几何体的面积、体积问题,是常考题目.本题可以直接求解,但是麻烦.解答组合体问题的常用方法是分割法.
练习册系列答案
相关题目