题目内容
已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8环的概率为0.22,命中7环的概率为0.12.
①求甲射击一次,命中不足8环的概率.
②求甲射击一次,至少命中7环的概率.
(1)甲射击一次,命中不足8环的概率是0.22.
(2)甲射击一次,至少命中7环的概率为0.9.
解析试题分析:记“甲射击一次,命中7环以下”为事件,“甲射击一次,命中7环”为事件,由于在一次射击中,与不可能同时发生,故与是互斥事件,
(1)“甲射击一次,命中不足8环”的事件为,
由互斥事件的概率加法公式,.
答:甲射击一次,命中不足8环的概率是0.22.
(2)方法1:记“甲射击一次,命中8环”为事件,“甲射击一次,命中9环(含9环)以上”为事件,则“甲射击一次,至少命中7环”的事件为,
∴.
答:甲射击一次,至少命中7环的概率为0.9.
方法2:∵“甲射击一次,至少命中7环”为事件,
∴=1-0.1=0.9.
答:甲射击一次,至少命中7环的概率为0.9.
考点:本题主要考查互斥事件、对立事件的概念及其概率计算。
点评:中档题,本题解法较多。(2)解法二利用了对立事件概率公式,较为简洁。
为了保养汽车,维护汽车性能,汽车保养一般都在购车的4S店进行,某地大众汽车4S店售后服务部设有一个服务窗口专门接待保养预约。假设车主预约保养登记所需的时间互相独立,且都是整数分钟,对以往车主预约登记所需的时间统计结果如下:
登记所需时间(分) | 1 | 2 | 3 | 4 | 5 |
频率 | 0.1 | 0.4 | 0.3 | 0.1 | 0.1 |
(l)估计第三个车主恰好等待4分钟开始登记的概率:
(2)X表示至第2分钟末已登记完的车主人数,求X的分布列及数学期望.
为了参加贵州省高中篮球比赛,某中学决定从四个篮球较强的班级的篮球队员中选出人组成男子篮球队,代表该地区参赛,四个篮球较强的班级篮球队员人数如下表:
班级 | 高三()班 | 高三()班 | 高二()班 | 高二()班 |
人数 | 12 | 6 | 9 | 9 |
(Ⅱ)该中学篮球队奋力拼搏,获得冠军.若要从高三年级抽出的队员中选出两位队员作为冠军的代表发言,求选出的两名队员来自同一班的概率.
(本小题满分12分)
甲,乙,丙三位学生独立地解同一道题,甲做对的概率为,乙,丙做对的概率分别为, (>),且三位学生是否做对相互独立.记为这三位学生中做对该题的人数,其分布列为:
0 | 1 | 2 | 3 | |
(2) 求,的值;
(3) 求的数学期望.