题目内容

(2011•合肥三模)在△ABC中,AB⊥AC,AB=6,AC=4,D为AC的中点,点E在边AB上,且3AE=AB,BD与CE交于点G,则
AG
BC
=
-
4
5
-
4
5
分析:先DH∥AB交CE于H,利用三角形的相似得出BG=
4
5
BD,从而可表示出
AG
,进而可得
AG
BC
3
5
AB
BC
+
2
5
BC
BC
,利用向量的数量积公式即可求得.
解答:解:作DH∥AB交CE于H,则DH为△AEC的中位线
∵3AE=AB,AB=6,
∴AE=2,
∴DH=
1
2
AE=1,
∵DH∥AB,∴
DH
BE
=
DG
BG
,所以BG=
4
5
BD
∵D为AC的中点,∴
BD
=
1
2
(
BA
+
BC
)

BG
=
2
5
(
BA
+
BC
)

AG
=
AB
+
BG
=
3
5
AB
+
2
5
BC

AG
BC
= (
3
5
AB
+
2
5
BC
)•
BC
=
3
5
AB
BC
+
2
5
BC
BC

∵AB⊥AC,AB=6,AC=4
BC=2
13
cos∠ABC=
3
13
13

3
5
AB
BC
+
2
5
BC
BC
=-
3
5
×6×2
13
×
3
13
13
+
2
5
×52
=-
4
5

AG
BC
=-
4
5

故答案为:-
4
5
点评:本题以三角形为载体,考查向量的数量积运算,解题的关键是根据比例关系得出
AG
,从而可得
AG
BC
3
5
AB
BC
+
2
5
BC
BC
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网