题目内容
(本小题满分12分)若函数y=lg(3-4x+x2)的定义域为M.当x∈M时,求f(x)=2x+2-3×4x的最值及相应的x的值.
解:y=lg(3-4x+x2),∴3-4x+x2>0,
解得x<1或x>3,∴M={x|x<1,或x>3}.
f(x)=2x+2-3×4x=4×2x-3×(2x)2.
令2x=t,∵x<1或x>3,∴t>8或0<t<2.
∴f(x)=4t-3t2=-32+(t>8或0<t<2).
由二次函数性质可知:当0<t<2时,f(x)∈,
当t>8时,f(x)∈(-∞,-160),
当2x=t=,即x=log2时,f(x)=.
综上可知:当x=log2时,f(x)取到最大值为,无最小值.
解得x<1或x>3,∴M={x|x<1,或x>3}.
f(x)=2x+2-3×4x=4×2x-3×(2x)2.
令2x=t,∵x<1或x>3,∴t>8或0<t<2.
∴f(x)=4t-3t2=-32+(t>8或0<t<2).
由二次函数性质可知:当0<t<2时,f(x)∈,
当t>8时,f(x)∈(-∞,-160),
当2x=t=,即x=log2时,f(x)=.
综上可知:当x=log2时,f(x)取到最大值为,无最小值.
略
练习册系列答案
相关题目