题目内容
定义在上的函数同时满足性质:①对任何,均有成立;②对任何,当且仅当时,有.则的值为 .
0
解析试题分析:首先根据题干条件解得f(0),f(-1)和f(-1)的值,然后根据对任何x1,x2∈R,x1≠x2均有f(x1)≠f(x2)可以判断f(0)、f(-1)和f(1)不能相等,据此解得答案解:∵对任何x∈R均有f(x3)=[f(x)]3,∴f(0)=(f(0))3,解得f(0)=0,1或-1, f(-1)=(f(-1))3,解得f(-1)=0,1或-1, f(1)=(f(1))3,解得f(1)=0,1或-1,∵对任何x1,x2∈R,x1≠x2均有f(x1)≠f(x2),∴f(0)、f(-1)和f(1)的值只能是0、-1和1中的一个,∴f(0)+f(-1)+f(1)=0,故答案为0
考点:函数的值
点评:本题主要考查函数的值的知识点,解答本题的关键是根据题干条件判断f(0)、f(-1)和f(1)不能相等,本题很容易出错
练习册系列答案
相关题目