题目内容

已知函数,如果存在实数,使,则的值(  )

A.必为正数 B.必为负数 C.必为非负 D.必为非正

A

解析试题分析:∵,∴f(x)=x2-2x+a.∵存在实数t,使f'(t)<0,a>0,∴t2-2t+a<0的解集不是空集,∴△=4-4a>0,解得a<1,因此0<a<1.令t2-2t+a=0,解得t=1±,∴t2-2t+a<0的解集是{x|0<1?<t<1+<2}.∵f(2-t)=(2-t)2-2(2-t)+a=t(t-2)+a,∴f(2-t)<0;∵ =()2?2×+a=+a,∴f(t)?f()=t2?2t?=≥0,∴f()≤f(t)<0,∴f′(t+2)•f′()>0,故选A.
考点:导数的运算.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网