题目内容
如图,从双曲线的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于P点,若M为线段FP的中点,O为坐标原点,则|MO|-|MT|与b-a的大小关系为( )A.|MO|-|MT|>b-a
B.|MO|-|MT|<b-a
C.|MO|-|MT|=b-a
D.以上三种可能都有
【答案】分析:将点P置于第一象限.设F1是双曲线的右焦点,连接PF1.由M、O分别为FP、FF1的中点,知|MO|=|PF1|.由双曲线定义,知|PF|-|PF1|=2a,|FT|==b.由此知|MO|-|MT|=(|PF1|-|PF|)+|FT|=b-a.
解答:解:将点P置于第一象限.
设F1是双曲线的右焦点,连接PF1
∵M、O分别为FP、FF1的中点,∴|MO|=|PF1|.
又由双曲线定义得,
|PF|-|PF1|=2a,
|FT|==b.
故|MO|-|MT|
=-|MF|+|FT|
=(|PF1|-|PF|)+|FT|
=b-a.
故选C.
点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与双曲线的相关知识,解题时要注意合理地进行等价转化.
解答:解:将点P置于第一象限.
设F1是双曲线的右焦点,连接PF1
∵M、O分别为FP、FF1的中点,∴|MO|=|PF1|.
又由双曲线定义得,
|PF|-|PF1|=2a,
|FT|==b.
故|MO|-|MT|
=-|MF|+|FT|
=(|PF1|-|PF|)+|FT|
=b-a.
故选C.
点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与双曲线的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关题目