ÌâÄ¿ÄÚÈÝ

ÒÑÖªÔ²C1£ºx2+y2=4£¬Ô²C2£ºx2+y2=25£®µãOΪ×ø±êÔ­µã£¬µãMÊÇÔ²C2ÉϵÄÒ»¶¯µã£¬Ï߶ÎOM½»Ô²C1ÓÚN£¬¹ýµãM×÷xÖáµÄ´¹Ïß½»xÖáÓÚM0£¬¹ýµãN×÷M0MµÄ´¹Ïß½»M0MÓÚP£®
£¨1£©µ±¶¯µãMÔÚÔ²C2ÉÏÔ˶¯Ê±£¬ÇóµãPµÄ¹ì¼£CµÄ·½³Ì£®
£¨2£©ÉèÖ±Ïßl£ºy=
x
5
+m
Óë¹ì¼£C½»ÓÚ²»Í¬µÄÁ½µã£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®
£¨3£©µ±m=
5
5
ʱ£¬Ö±ÏßlÓë¹ì¼£CÏཻÓÚA£¬BÁ½µã£¬Çó¡÷OABµÄÃæ»ý£®
·ÖÎö£º£¨1£©Éè³öµãPµÄ×ø±ê£¬¿ÉÒÔ±íʾ³ö»òÉè³öµãM£¬NµÄ×ø±ê£¬ÔÙ¸ù¾ÝµãM£¬N·Ö±ðÔÚÔ²C2£¬C1ÉÏ£¬¼´¿ÉÓõãPµÄ×ø±ê±íʾµãMµÄ×ø±ê£¬Óá°´úµã·¨¡±¼´¿ÉµÃ³ö£»
£¨2£©ÀûÓã¨1£©µÄ¹ì¼£CµÄ·½³ÌÓëÖ±Ïß·½³ÌÁªÁ¢£¬ÏûÈ¥Ò»¸öδ֪ÊýµÃµ½¹ØÓÚÁíÒ»¸öδ֪ÊýµÄÒ»Ôª¶þ´Î·½³Ì£¬ÓÉÓÚÖ±ÏßlÓë¹ì¼£C½»ÓÚ²»Í¬µÄÁ½µã£¬±ØÐëÂú×ã¡÷£¾0¼´¿ÉÇó³ö£»
£¨3£©ÀûÓõ㵽ֱÏߵľàÀ빫ʽºÍÏÒ³¤¹«Ê½¼´¿ÉµÃ³ö£®
½â´ð£º½â£¨1£©ÉèµãP£¨x£¬y£©£®ÔòM£¨x£¬yM£©£¬N£¨xN£¬y£©£®´Ó¶ø
OM
=(x£¬yM)£¬
ON
=(xN£¬y)

¡ß
OM
=
5
2
ON
£¬¡à(x£¬yM)=
5
2
(xN£¬y)
£®¼´x=
5
2
xN£¬yM=
5
2
y
£®¡àM(x£¬
5
2
y)
£®
¡ßµãMÔÚÔ²C2ÉÏ£¬¡àx2+(
5
2
y)2=25
£®ÕûÀíµÃµãPµÄ¹ì¼£CµÄ·½³Ì£º
x2
25
+
y2
4
=1
£®
£¨2£©ÁªÁ¢
x2
25
+
y2
4
=1
y=
x
5
+m
ÏûyµÃµ½x2+2mx+5m2-20=0£®
¡ßÖ±Ïßl£ºy=
x
5
+m
Óë¹ì¼£C½»ÓÚ²»Í¬µÄÁ½µã£¬¡à¡÷=£¨2m£©2-4£¨5m2-20£©£¾0£¬¼´m2£¼5£®
¡àʵÊýmµÄÈ¡Öµ·¶Î§Îª(-
5
£¬
5
)
£®
£¨3£©Ö±Ïßl£ºy=
x
5
+
5
5
£®ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÁªÁ¢
x2
25
+
y2
4
=1
y=
x
5
+
5
5
ÏûxµÃµ½x2+
2
5
5
x-19=0
£®
Ôòx1+x2=-
2
5
5
£¬x1x2=-19
£®
|AB|=
(x1-x2)2+(y1-y2)2
=
(x1-x2)2+[(
x1
5
+
5
5
)-(
x2
5
+
5
5
)]
2

=
26
5
(x1-x2)2
=
26
5
(x1+x2)2-4x1x2
=
26
5
¡Á
8
6
5
£®
Ö±Ïßl£ºx-5y+
5
=0
£®ÉèOµ½Ö±ÏßABµÄ¾àÀëΪd£¬Ôòd=
|0-5¡Á0+
5
|
1+52
=
5
26
£®
S¡÷OAB=
1
2
|AB|d=
1
2
¡Á
26
5
¡Á
8
6
5
¡Á
5
26
=
4
6
5
£®
µãÆÀ£ºÊìÁ·ÕÆÎÕÖ±ÏßÓëԲ׶ÇúÏßµÄÏཻÎÊÌâת»¯Îª¹ØÓÚÒ»¸öδ֪ÊýµÄÒ»Ôª¶þ´Î·½³ÌÇó½âÎÊÌâ½ø¶øת»¯Îª¡÷Óë0µÄ´óС±È½ÏÎÊÌâ¡¢¡°´úµã·¨¡±¡¢ÏÒ³¤¹«Ê½¡¢µãµ½Ö±ÏߵľàÀ빫ʽÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø