题目内容
设n∈N*,求证:++…+<.
见解析
【解析】证明:由=<=(-)可知<(1-),<(-),
…,<(-),
从而得++…+<(1-)<.
如图所示,使电路接通,开关不同的开闭方式有( )
(A)11种 (B)20种
(C)21种 (D)12种
一个袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和小于15的概率为( )
(A) (B) (C) (D)
某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,则n等于( )
(A)5 (B)6 (C)7 (D)8
已知a1=1,a2=4,an+2=4an+1+an,bn=,n∈N+.
(1)求b1,b2,b3的值.
(2)设cn=bnbn+1,Sn为数列{cn}的前n项和,求证: Sn≥17n.
(3)求证:|b2n-bn|<·.
若正数a,b,c满足a+b+c=1,
(1)求证:≤a2+b2+c2<1.
(2)求++的最小值.
已知实数a,b,c,d满足a+b+c+d=3,a2+2b2+3c2+6d2=5,试求a的最值.
已知直线l1:y=2x+1,l2:y=2x+5,则直线l1与l2的位置关系是( )
(A)重合 (B)垂直
(C)相交但不垂直 (D)平行
椭圆C1:+=1(a>b>0)的左、右顶点分别为A,B,点P是双曲线C2:-=1在第一象限内的图象上一点,直线AP,BP与椭圆C1分别交于C,D点,若S△ACD=S△PCD.
(1)求P点的坐标.
(2)能否使直线CD过椭圆C1的右焦点,若能,求出此时双曲线C2的离心率;若不能,请说明理由.