题目内容
【题目】设O为坐标原点,动点M在椭圆C:上,过M作x轴的垂线,垂足为N,点P满足.
(1)求点P的轨迹方程;
(2)设点Q在直线上,且。证明:过点P且垂直于OQ的直线l过C的左焦点F.
【答案】(1)点P的轨迹方程为x2+y2=2.(2)证明见解析。
【解析】
(1)设M(x0,y0),由题意可得N(x0,0),设P(x,y),运用向量的坐标运算,结合M满足椭圆方程,化简整理可得P的轨迹方程;
(2)设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),运用向量的数量积的坐标表示,可得m,即有Q的坐标,求得椭圆的左焦点坐标,求得OQ,PF的斜率,由两直线垂直的条件:向量数量积为0,即可得证.
(1)设M(x0,y0),由题意可得N(x0,0),
设P(x,y),由点P满足=.
可得(x﹣x0,y)=(0,y0),
可得x﹣x0=0,y=y0,
即有x0=x,y0=,
代入椭圆方程+y2=1,可得+=1,
即有点P的轨迹方程为圆x2+y2=2;
(2)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),
=1,可得(cosα,sinα)(﹣3﹣cosα,m﹣sinα)=1,
即为﹣3cosα﹣2cos2α+msinα﹣2sin2α=1,
当α=0时,上式不成立,则0<α<2π,
解得m=,
即有Q(﹣3,),
椭圆+y2=1的左焦点F(﹣1,0),
由=(﹣1﹣cosα,﹣sinα)(﹣3,)
=3+3cosα﹣3(1+cosα)=0.
可得过点P且垂直于OQ的直线l过C的左焦点F.
另解:设Q(﹣3,t),P(m,n),由=1,
可得(m,n)(﹣3﹣m,t﹣n)=﹣3m﹣m2+nt﹣n2=1,
又P在圆x2+y2=2上,可得m2+n2=2,
即有nt=3+3m,
又椭圆的左焦点F(﹣1,0),
=(﹣1﹣m,﹣n)(﹣3,t)=3+3m﹣nt
=3+3m﹣3﹣3m=0,
则⊥,
可得过点P且垂直于OQ的直线l过C的左焦点F.