题目内容

【题目】O为坐标原点,动点M在椭圆C上,过Mx轴的垂线,垂足为N,点P满足.

1)求点P的轨迹方程;

(2)设点Q在直线上,且。证明:过点P且垂直于OQ的直线lC的左焦点F.

【答案】(1)点P的轨迹方程为x2y2=2.(2)证明见解析。

【解析】

(1)设M(x0,y0),由题意可得N(x0,0),设P(x,y),运用向量的坐标运算,结合M满足椭圆方程,化简整理可得P的轨迹方程;

(2)设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),运用向量的数量积的坐标表示,可得m,即有Q的坐标,求得椭圆的左焦点坐标,求得OQ,PF的斜率,由两直线垂直的条件:向量数量积为0,即可得证.

(1)设M(x0,y0),由题意可得N(x0,0),

设P(x,y),由点P满足=

可得(x﹣x0,y)=(0,y0),

可得x﹣x0=0,y=y0

即有x0=x,y0=

代入椭圆方程+y2=1,可得+=1,

即有点P的轨迹方程为圆x2+y2=2;

(2)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),

=1,可得(cosα,sinα)(﹣3﹣cosα,m﹣sinα)=1,

即为﹣3cosα﹣2cos2α+msinα﹣2sin2α=1,

当α=0时,上式不成立,则0<α<2π,

解得m=

即有Q(﹣3,),

椭圆+y2=1的左焦点F(﹣1,0),

=(﹣1﹣cosα,﹣sinα)(﹣3,

=3+3cosα﹣3(1+cosα)=0.

可得过点P且垂直于OQ的直线l过C的左焦点F.

另解:设Q(﹣3,t),P(m,n),由=1,

可得(m,n)(﹣3﹣m,t﹣n)=﹣3m﹣m2+nt﹣n2=1,

又P在圆x2+y2=2上,可得m2+n2=2,

即有nt=3+3m,

又椭圆的左焦点F(﹣1,0),

=(﹣1﹣m,﹣n)(﹣3,t)=3+3m﹣nt

=3+3m﹣3﹣3m=0,

可得过点P且垂直于OQ的直线l过C的左焦点F.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网